Price & volume measures: 3.1 - Introduction

Tim Jones SIAP consultant lecturer

Objectives

After this session, participants will be aware of:

- Our main focus: GDP
- Laspeyres price & volume indices:
 - Three methods of calculation, giving the same result
- GDP deflator a Paasche price index
- Basic level price relatives
 - Unweighted aggregation methods
- Areas of weakness in constant price estimates

GDP at current & constant prices

Our main focus is GDP at constant prices
It is all about goods and services (products),
But GDP is a balancing item, in terms of products:
Expenditure: C + I + X – M
Production: TO – IC

The Income measure of GDP is not defined in terms of products. It can only be deflated using the GDP deflator based on expenditure or production

Price and volume decomposition

- In principle, there is a quantity and a price for every product (sometimes hard to determine)
- Standard notation (current prices):
 - $\overline{v_{i,t}} = \overline{p_{i,t} * q_{i,t}} \text{ (and } V_t = \sum_i \overline{v_{i,t}})$
- Estimates at constant prices (3 ways):

$$v'_{i,t} = p_{i,0} * q_{i,t} \text{ (and } V'_{i,t} = \sum_{i} v'_{i,t})$$
$$= v_{i,0} * \frac{q_{i,t}}{q_{i,0}} = \frac{v_{i,t}}{\binom{p_{i,t}}{p_{i,0}}}$$

What national accountants should know about index numbers

Simple indices (relatives)

Data on any two of the three elements are neededI find it useful, for extrapolation, to work with simple indices like these:

 $VI(t) = 100*^{v_t}/v_0$ $QI(t) = 100*^{q_t}/q_0$ $PI(t) = 100*^{p_t}/p_0$

Value indices are always simple. But quantity and price indices are more complex for nonhomogeneous products

Laspeyres Price/Volume Indices Method 0

Volume indices

$$QI_{L}(t) = \frac{\sum_{i} p_{i,0} * q_{i,t}}{\sum_{i} p_{i,0} * q_{i,0}}$$

Price indices

$$PI_L(t) = \frac{\sum_i p_{i,t} * q_{i,0}}{\sum_i p_{i,0} * q_{i,0}}$$

Laspeyres Price/Volume Indices Method 1

Volume and price indices have the same form

$$Q \text{ or } PI_L(t) = \sum_{i}^{l} w_{i,0} * r_{i,(t,0)}$$

where $w_{i,0} = \frac{v_{i,0}}{V_0}$ $(V_0 = \sum_i v_{i,0})$ and $r_{i,(t,0)} = \frac{q_{i,t}}{q_{i,0}}$ (volume relatives) or $r_{i,(t,0)} = \frac{p_{i,t}}{p_{i,0}}$ (price relatives)

Laspeyres Price/Volume Indices Method 2

"Modified" Laspeyres

$$I_L(t) = I_L(t-1) * R_{t,t-1}$$

where $R_{t,t-1} = \sum_{i} w_{i,t-1} * r_{i,(t,t-1)}$ $w_{i,t} = \frac{u_{i,t}}{U_t} \quad (U_t = \sum_{i} u_{i,t})$ and $u_{i,t} = w_{i,t-1} * r_{i,(t,t-1)}$ (updated)

NB: $R_{t,t-1} = U_t$

Advantages of modified Laspeyres

- $W_{i,t}$ are "price/volume updated" weights
- Easier to substitute new items
- Possible to insert new weights at any time
- If this is done, the index becomes "chained"

GDP deflator

 The (implied) GDP deflator is of course the ratio of GDP at current prices to the GDP at constant prices
 It is a Paasche price index number

$$= \frac{\sum_{i} p_{i,t} * q_{i,t}}{\sum_{i} p_{i,0} * q_{i,t}} \quad \text{or} \quad \frac{1}{\sum_{i}}$$

 $\frac{v_{i,t}}{p_{i,t}} / (p_{i,t}/p_{i,0})$

Deflation

To measure GDP at constant prices:

- We do not construct the GDP deflator so as to deflate the current price GDP
- We deflate individual component values by an appropriate price relative and then we aggregate

It does not make much sense to create a Paasche index to deflate product values

 To do so implies you have the data you need to calculate the constant price figures in detail and sum up.

Basic level price relatives

- Composite price indices such as the CPI or PPI are not very interesting for national accountants. The basic level relatives (used to compile such indices) are much more useful.
 - If more than one price relative is applicable to a basic heading, below which there is no information on weights, how would you combine them?

Three possible methods

Basic level unweighted aggregation

Carli price Index

 A simple, or unweighted, arithmetic average of the price relatives. (This varies with the choice of base period.)

Dutot price index

The ratio of the unweighted arithmetic averages of the prices in the two periods compared. (This varies with the relative levels of the prices.)

Jevons price index (recommended)

The unweighted geometric average of the relatives = the ratio of the geometric average of the prices. (Invariant.)

Discussion

In which areas are your constant price estimates the weakest?