Session 4.2:
 Price and Volume Measures

Regional Course on Integrated Economic Statistics to Support 2008 SNA Implementation

Leonidas Akritidis
Office for National Statistics
United Kingdom

Office for
National Statistics

Content

1. Introduction
2. Price and Volume: concept and measures
3. Developing relevant deflator
4. Quality change in price indices
5. Price and Volume Indices
6. Chain-linking and re-referencing
7. Double v. Single deflation/extrapolation

1. Introduction:

- Covered in 2008 SNA chapter 15;
- A very useful handbook used in the UK National Accounts and in Europe is the Eurostat Handbook on price and volume measures

1. Introduction

- Uses of price and volumes data:

Comparing economy over time

Comparing different economies at the same time

1. Introduction

- Determined by a market
- Non-market products?
- Different types of prices:

Basic price
Producer price
Purchaser price
Published price indexes (CPI, PPI,)
2. Prices and Volume

Quantity

- Value, price and quantity are linked by the fundamental equation:

$$
v=p \cdot q
$$

- This equation is valid only for homogeneous products

2. Prices and Volume

Homogeneous products

- Homogeneous products are products for which it is possible to define units which are all considered equivalent and which can thus be exchanged for the same monetary value
- A homogeneous product consists of units of the same quality

2. Prices and Volume

Volumes

- Seems easy when the product is simple - just a physical quantity (one ton of coal or one cup of coffee....)
- But ‘volume’ also includes quality : more "value for money"
- Volume = quantity * quality

2. Prices and Volume

Decomposing values

- Value = Volume x Price

$$
\text { Volume }=\frac{\text { Value }}{\text { Price }}
$$

- Can also express this as:
- => deflation

2. Prices and Volume

Constant prices

- The notion of volume is introduced to eliminate the effect of price changes on a set of products
- This effect can be offset by calculating what the value of the set of products would have been if there had been no changes in prices

3. Developing relevant deflators

Deflators for market output

- Best method: deflation by appropriate producer price indices:
- basic prices
- adjustments for quality changes
- exact correspondence to products to be deflated
- concepts according to national accounts (or an indicator proven to be equivalent)

3. Developing relevant deflators

Deflators for market output

- Alternative methods: less appropriate PPIs, CPIs, volume indicators
- Unacceptable methods: input methods, secondary indicators, inappropriate price indices
- To be applied to specific products first

Agriculture

- Usually price*quantity approach so all data are available. Some remaining issues:
Production process spread over more than one accounting period
Seasonal prices
Subsidies

Manufacturing

- Usually PPIs available
- Unique products
large equipment: ships, planes, special machines
- Computers

Construction

- Wide range of products new construction improvements
- Unique products -> model prices
- Production process spread over more than one accounting period

Wholesale and retail trade services

- Trade margins: no direct prices paid for trade services
- Assumption used: volume of output equals volume of sales
- How to measure quality of trade services, eg. supermarket versus shop-on-the corner

Transport and communication

- Transport: passenger-kilometres and tonnekilometres are acceptable methods
- Take account of subsidies
- "Empty bus" problem
- Communications: differentiate household and business purchases

Banking

- Two parts: explicit charges and FISIM
- For explicit charges price indices can be developed
- This is not the case for FISIM are the use of volume indicators (deleted stock using general price index) and price that is base year interest rates

Non-market services

- Examples - health, education, defense, administration
- Difference between "individual" and "collective" services
- Measurement of output in current prices

Measuring at constant prices?

- Distinguish between:
- Input-based methods - deflating inputs
- Output-based methods - measuring volume of output using indicators

Education

- One definition "quantity of teaching received by students, adjusted to allow for qualities of the services provided, for each type of education"
- What does this mean?

Quantity of teaching
Adjusted for quality
Type of education

Health

- One definition "the quantity of health care received by patients, adjusted to allow for qualities of service provided, for each type of health care"
- Looks similar to education
- What is quantity?

Collective services

- Difficult to define output, but not impossible:

Tax system
Social Security
Public administration?

- Use of activity indicators
- Measuring quality

4. Quality change in price indices

- Examples of quality
- physical characteristics
- accompanying services
- location
- timing
- Price discrimination

4. Quality change in price indices

- Depends on the type of product, but generally:
- Matched models
- Option pricing
- Overlapping
- Expert judgment
- Hedonics

5. Price and Volume indices

Comparing base and current periods

- The value of a set of products in the current period is:

$$
\begin{array}{r}
v^{1}=\sum_{i} p_{i}^{1} \times q_{i}^{1} \\
\text { Vol }=\sum_{i} p_{i}^{0} \times q_{i}^{1}
\end{array}
$$

- The volume can be defined as:
- The volume index is:

$$
\text { IVol }=\frac{\sum_{i} p_{i}^{0} \times q_{i}^{1}}{\sum_{i} p_{i}^{0} \times q_{i}^{0}}
$$

5. Price and Volume indices

Table 1 Car Production

	Year 0			Year 1			
	Price (000 \$/un.)	Quantity (No.)	Value (000 \$)	Price (000 \$/un.)	Quantity (No.)	Value (000 \$)	Value (year 0 \$)
	(1)	(2)	(3) $=(1)^{*}(2)$	(4)	(5)	(6)=(4)*(5)	(7)=(1)*(5)
Model A	20	15	300	40	24	960	480
Model B	10	15	150	20	6	120	60
Σ		30	450		30	1,080	540

Values in column (6) are in current prices showing a 140 percent increase over year 0 (index $=1080 / 450=240$)

Values in column (7) are at constant prices of year 0, they reflect changes in quantity and/or quality.
$>$ Values at constant prices are an aggregated volume measure, expressed in money terms and additive

5. Price and Volume indices

- The average of the proportionate changes in the price (or volume) of a specific set of goods and services between two periods of time

5. Price and Volume indices

The Laspeyres philosophy

- time periods 0 and t
- quantity (volume) relatives qt/q0
- weights : share in total value of period 0
- Laspeyres volume index
(arithmetic mean of quantity relatives)

$$
L_{q}=\sum \frac{v_{0} q_{t} / q_{0}}{\sum v_{0}}=\frac{\sum p_{0} q_{t}}{\sum p_{0} q_{0}}
$$

5. Price and Volume indices

The Laspeyres philosophy

- time periods 0 and t
- price relatives pt/p0
- weights of period 0
- Laspeyres price index

$$
L_{P}=\sum \frac{v_{0} p_{t} / p_{0}}{\sum v_{0}}=\frac{\sum p_{t} q_{0}}{\sum p_{0} q_{0}}
$$

5. Price and Volume indices

Laspeyres Volume Index Formula

- The change from the base year in constant prices or the ratio of the current year volume to the base year volume in table 1 may be expressed in index form as:

$$
L Q_{0 \rightarrow t}=540 \times 100 / 450=120.0
$$

- This is also called Laspeyres (fixed-base) volume index ($L Q_{0 \rightarrow t}$).
- Mathematically:

$$
\begin{equation*}
L Q_{0 \rightarrow t}=Q_{0, t} / Q_{0,0}=Q_{0, t} / V_{0}=\sum_{i} p_{i, 0} \times q_{i, t} / \sum_{i} p_{i, 0} \times q_{i, 0} \tag{1}
\end{equation*}
$$

- Note: the two components of the index are ADDITIVE
* The Laspeyres volume index can also be written as:

$$
\begin{equation*}
L Q_{0 \rightarrow t}=\sum_{i} w_{i, 0} \times q_{i, t} / q_{i, 0} \tag{2}
\end{equation*}
$$

s where $w_{i, 0}$ is the base period weight, i.e. the items share in the total value in the base period

5. Price and Volume indices

The Laspeyres philosophy

Table 2

	Year 0				Year 1		
	$\begin{gathered} \text { Price } \\ \text { (000 \$/un.) } \end{gathered}$	Quantity (No.)	Value (000 \$)	Weight (w_{0})	Quantity (No.)	Quantity relatives (QR)	$\mathrm{w}_{0}{ }^{*} \mathrm{QR}$
	(1)	(2)	(3) $=(1)^{*}(2)$	(4)=(3)/E(3)	(5)	(6)=(5)/(2)	(7)=(4)*(6)*100
Model A	20	15	300	66.7\%	24	1.6	107
Model B	10	15	150	33.3\%	6	0.4	13
Σ		30	450		30		120

Paasche Price Index Formula

- To factor the change in the value of car production from year 0 to year 1 arising from price changes.
$>$ take the ratio of the value of output in current prices in year 1 to the value of output in year 1 measured in constant prices (prices of year 0) (and multiply it with 100 to convert to an index form):

$$
P P_{0 \rightarrow t}=1080 \times 100 / 540=200.0
$$

Shows 100 percent increase or doubling in prices
The above ratio is also called the Paasche price index $\left(\mathrm{PP}_{0 \rightarrow t}\right)$. Algebraically:

$$
\begin{gather*}
P P_{0 \rightarrow t}=V_{t} / Q_{0, t}=\sum_{i} p_{i, t} \times q_{i, t} / \sum_{i} p_{i, 0} \times q_{i, t} \tag{1}\\
P P_{0 \rightarrow t}=1 / \sum_{i} w_{i, t} \times p_{i, 0} / p_{i, t} \tag{2}
\end{gather*}
$$

where $w_{i, t}$ is the current period weight, i.e. the items share in the total value in the current period

Paasche Price Index Formula

According to the later formulation, $P P_{0 \rightarrow t}$ is derived as follows from the data in table 1:

Table 3

	Year 0 Price $(000 \$ /$ un. $)$	Price $(000 \$ /$ un. $)$	Value $(000 \$)$	Year 1 Weight $\left(w_{1}\right)$	Price relatives (PR)	$\mathbf{w}_{1} *$ PR
	(1)	(2)	(3)	$(4)=(3) / \Sigma(3)$	$(5)=(1) /(2)$	$(6)=(4) *(5) * 100$
Model A	20	40	960	88.9%	0.5	0.44
Model B	10	20	120	11.1%	0.5	0.06
Σ			1,080			0.50
$P P_{0 \rightarrow t}=1 / \Sigma\left(w_{1} * P R\right)=(1 / 0.5) \times 100$			200.00			

The ratio of any aggregate in current prices to the aggregate in constant prices yields an implicit Paasche price deflator

Price measures for the main national accounts aggregates are (always) derived implicitly

5. Price and Volume indices

Value, Volume and Price Indexes

The change in the current price value of car production from year 0 to year 1 in our example can be expressed algebraically as:

$$
V_{t} / V_{0}=\sum_{i} p_{i, t} q_{i, t} / \sum_{i} p_{i, 0} q_{i, 0}
$$

Multiplying and dividing by $\Sigma_{i} p_{i, 0} q_{i, t}$ gives:

$$
V_{t} / V_{0}=\left(\sum_{i} p_{i, 0} q_{i, t} / \sum_{i} p_{i, 0} q_{i, 0}\right) *\left(\sum_{i} p_{i, t} q_{i, t} / \sum_{i} p_{i, 0} q_{i, t}\right)
$$

Value index = Laspeyres Volume index * Paasche Price index / 100

$$
\underbrace{V_{t} / V_{0} \times 100}_{240}=\underbrace{L Q_{0 \rightarrow t}}_{120} \times \underbrace{P P_{0 \rightarrow t}}_{200} / 100
$$

> The volume and price effects of value change are multiplicative
$>$ When V_{t} and V_{0} are known and $P P_{0 \rightarrow t}$ is available the Laspeyres volume index can be derived indirectly from above formula - a process called price deflation

5. Price and Volume indices

Value, Volume and Price Indexes

Another set of volume and price indices may be obtained starting from the change in the current price value of car production from year 0 to year 1:

$$
V_{t} / V_{0}=\sum_{i} p_{i, t} q_{i, t} / \sum_{i} p_{i, 0} q_{i, 0}
$$

Multiplying and dividing by $\Sigma_{i} p_{i, t} q_{i, 0}$ gives:

$$
V_{t} / V_{0}=\left(\sum_{i} p_{i, t} q_{i, o} / \sum_{i} p_{i, 0} q_{i, 0}\right) *\left(\sum_{i} p_{i, t} q_{i, t} / \sum_{i} p_{i, t} q_{i, 0}\right)
$$

or Value index = Paasche Volume index * Laspeyres Price index / 100

$$
\underbrace{V_{t} / V_{0} \times 100}_{240}=\underbrace{L P_{0 \rightarrow t}}_{200} \times \underbrace{P Q_{0 \rightarrow t}}_{120} / 100
$$

$>P Q_{0 \rightarrow t}$ can be obtained by inflating the base period values using the often available $L P_{0 \rightarrow t}$ and then dividing the current price value by this amount.

5. Price and Volume indices

Laspeyres, Paasche and Fischer

- Laspeyres: weights of period 0
- Paasche: weights of period t
- Fischer: geometric mean of Laspeyres and Paasche

5. Price and Volume indices

Laspeyres, Paasche and Fischer

Value index
$=$
Laspeyres volume index * Paasche price index
=
Paasche volume index * Laspeyres price index
=
Fischer volume index * Fischer price index

Example

- Value in 2005 :120
- Paasche price index 2004-2005: 125
- Volume 2005 in prices of 2004: 96
- Laspeyres volume index 2004-2005: 120
- Value in 2004: 80
- Value change = 20\% * 25\% = 50\%

5. Price and Volume indices

- CPIs, PPIs: all Laspeyres price indices
- Define precise bundle of goods and services \& obtain their value shares in base year (for weighting)
- Observe monthly prices, by going to shops, magazines, internet, etc.
- Calculate index

6. Chain-linking and re-referencing

- When a fixed base Laspeyres is used over a long run of periods, the weights become progressively out of date and irrelevant.
- Chain-linking is simply the limiting case in which the weights are updated each period.
- No fixed base year but moving base year: always use weights of previous year to calculate growth rates (Previous Year Prices - PYPs)
- Chain year-on-year growth rates together to obtain "constant price" data
- Non - additivity will occur in "constant price" series

6. Chain-linking and re-referencing

Base and reference period

- Base period
the period that provides the weights for the index
- Reference period
the period for which the index has the value 100

6. Chain-linking and re-referencing

Re-Referencing

Table 6

	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$
Index (reference period 2000=100)	100	110	120	130
Growth rate (percent)		10.0	9.1	8.3
New Index (reference period 2010=100) Growth rate (percent)	83.3	91.7	100	108.3

$>$ Growth rate remains the same
> Re-referencing shifts focus to new reference year
> Values of the other periods are now compared with the value in this year

6.Change of Base Year. Effect on growth rates

Table 7

7. Double v. Single deflation/extrapolation

Best method: double deflation/extrapolation
$>$ GVA is derived as output less intermediate consumption at constant prices, both obtained separately

Alternative method:

Single extrapolation

$>$ GVA is extrapolated using output data
$>$ GVA is extrapolated using employment data

Single deflation

$>$ GVA is deflated using output deflator
$>$ GVA is deflated using the wage index
$>$ GVA is deflated using a general price index, e.g. CPI

7. Illustration of Double Deflation Method

Double Deflation - Example

	2003							
	Current prices			Price indexes		Constant (2000) prices		
	$\begin{gathered} \text { GO } \\ (000 \$) \end{gathered}$	$\begin{gathered} \text { IC } \\ (000 \$) \end{gathered}$	$\begin{gathered} \hline \text { GVA } \\ (000 \$) \end{gathered}$	$\begin{gathered} \hline \text { PPI } \\ (2000=100) \end{gathered}$	ICI $(2000=100)$	$\begin{gathered} \text { GO } \\ (000 \$) \end{gathered}$	$\begin{gathered} \text { IC } \\ (000 \$) \end{gathered}$	$\begin{gathered} \hline \text { GVA } \\ (000 \$) \end{gathered}$
	(1)	(2)	(3)=(1)-(2)	(4)	(5)	(6)=(1)/(4)*100	(7)(5)*100	(8)=(6)-(7)
Mining	7,300.0	3,800.0	3,500.0	210.0	215.0	3,476.2	1,767.4	1,708.7
Manufacturing	12,800.0	6,300.0	6,500.0	185.0	206.0	6,918.9	3,058.3	3,860.7
Total	20,100.0	10,100.0	10,000.0	----	----	10,395.1	4,825.7	5,569.4

	$\mathbf{2 0 0 0}$ Current prices	$\mathbf{2 0 0 3}$	
	GVA $(000 \$)$	GVA volume index $(2000=100)$	GVA implicit deflator $(2000=100)$
	$\mathbf{(9)}$	$(\mathbf{1 0})=(\mathbf{8})(\mathbf{9}) * 10$ $\mathbf{0}$	$(11)=(\mathbf{3}) /(\mathbf{8}) * \mathbf{1 0}$ $\mathbf{0}$
Mining	$1,735.0$	98.5	204.8
Manufacturing	$3,680.0$	104.9	168.4
Total	$\mathbf{5 , 4 1 5 . 0}$	$\mathbf{1 0 2 . 9}$	$\mathbf{1 7 9 . 6}$

GO: Gross Output
IC: Intermediate Consumption
GVA: Gross Value Added
PPI: Producer Price Index
ICI: Intermediate Consumption price Index

7. Illustration of Single Indicator Methods

Primary data

Date	Output at current prices (1)	Intermediate consumption current (2)	Value added current prices $(3)=(1)-(2)$
2000	3,200	2,400	800
2001	2,940	2,100	840
2001	3,680	2,700	980

Date	Output at constant 2000 prices (4)	Paasche price deflator for output $(5)=(1) /(4) * 100$	Output volume index
$(6)=(4) / 3200 * 100$			
2000	3,200	100.0	100.0
2001	3,000	98.0	93.8
2002	3,100	118.7	96.9

7. Illustration of Single Indicator Methods

Single extrapolation					
Date	Value added 2000	Laspeyres volume index output (6)		Value added constant 2000 prices $(7)=800 *(6) / 100$	
2000	800	100.0	$800 * 1.000$	$=$	800.0
2001	$\ldots . .$.	93.8	$800 * 0.938$	$=$	750.0
2002	$\ldots . .$.	96.9	$800 * 0.969$	$=$	775.0

Single deflation

Date	Paasche price deflator for output (5)	Value added current prices $(13)=(1)-(2)$	800.0	$800 / 1.000$
2000	100.0	840.0	$840 / 0.980$	$=$
2001	98.0	980.0	$980 / 1.187$	$=$
2002	118.7		Value added constant 2000 prices $(14)=(13)(5) * 100$	

