Second Regional Training Course on Sampling Methods for Producing Core Data Items for Agricultural and Rural Statistics

Module 3: Sampling Methods for Crop-Cutting Surveys

Session 3.3: Estimation Methods for Output, Resources and Input from Crop Cutting Surveys

> 9 – 20 November 2015, Jakarta, Indonesia

Contents

- Agricultural Surveys
- Important Definitions
- Crop Cutting Surveys
- Estimation of Crop Area and Production
- Sample Selection and Statistical units

Estimating Yield – CCS

- Usually, a stratified multi-stage random sampling design is adopted.
- * Typically, stratification is done at a sub-district level.
- * From each stratum

₹IOP

Estimating Yield – epsem Selection (1)

For a district:

- * Number of stratum (s):
- * Area under the crop in the sth stratum: a_s
- Number of villages / clusters (i): n_s
 selected by SRSWOR
- Number of plots (j) in the ith village: n_{si}
 selected by epsem
- * One experimental sub-plot selected by epsem

5

Crop Cutting Surveys

Estimating Yield – epsem Selection (2)

If y_{sij} be the observed yield from the selected sub-plot of the j^{th} plot of the i^{th} village / cluster of the s^{th} stratum, then

Estimated average of green yield for the **s**th stratum is:

$$\widehat{\overline{Y}}_{s}^{g} = \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \frac{1}{n_{si}} \sum_{j=1}^{n_{si}} y_{sij}$$

Estimate of district level average yield of the dry marketable produce per hectare is given by

$$\widehat{\overline{Y}}^m = d.f. \frac{\sum_{s=1}^S a_s \widehat{\overline{Y}}_s^g}{\sum_{s=1}^S a_s}$$

where

d: driage ratio

f: conversion factor for green yield to dry marketable produce per hectare.

Estimating Output - PPS selection of FSU (1)

For a district:

- * Number of stratum (s):
- * Area under the crop in the sth stratum: a_s
- Number of villages / clusters (i): n_s

selected by PPS,

- with selection probability: p_{si}
- * Area under crop in *i*th village/ cluster: *a_{si}*
- * Number of plots (j): n_{si} selected by epsem
- * One experimental sub-plot selected by epsem

7

Crop Cutting Surveys

Estimating Output – PPS selection of FSU (2)

If y_{sij} be the observed yield from the selected sub-plot of the j^{th} plot of the i^{th} village / cluster of the s^{th} stratum, then

Estimated green output for **i**th village / cluster of the **s**th stratum is:

$$\widehat{O}_{si} = a_{si} \cdot \frac{1}{n_{si}} \sum_{j=1}^{n_{si}} y_{sij}$$

Estimated green output for the **s**th stratum is:

$$\widehat{O}_s = \frac{1}{n_s} \sum_{i=1}^{n_s} \widehat{O}_{si} / p_{si}$$

Estimate of district level dry marketable produce is given by

$$\widehat{\boldsymbol{o}} = \boldsymbol{d}.\boldsymbol{f}.\sum_{s=1}^{S} \widehat{\boldsymbol{o}}_s$$

Estimating Yield - PPS selection of FSU

For estimating yield from the CCS, we have to estimate the area under the crop for the district.

This is done as:

$$\widehat{A}_s = \frac{1}{n_s} \sum_{i=1}^{n_s} a_{si}$$

and total under the crop for the district is given by

$$\widehat{A} = \sum_{s=1}^{S} \widehat{A}_s$$

Estimate of district level average yield of the *dry marketable* produce per hectare is thus given by

$$\widehat{Y} = \widehat{o}_s /_{\widehat{A}_s}$$

9

THANKS

