Second Regional Training Course on Sampling Methods for Producing Core Data Items for Agricultural and Rural Statistics

Module 5: Sampling Methods for Livestock Surveys
Session 5.2: Sampling methods for livestock surveys

9 – 20 November 2015, Jakarta, Indonesia

Sampling designs for livestock surveys

✓ Normally a variation of stratified multi-stage random sampling is adopted

Depending on

- ✓ Frame available (units &variables)
- ✓ Estimates required
- ✓ Level of disaggregation demanded

Sampling designs for livestock surveys

- **✓** Stratification:
 - √ Geographical: (sub)District, Province,...
 - ✓ Geographical * livestock variables: district*sheep producing (0,1), province*livestock unit, ..
- **✓** Clustering:
 - √Village/town (with livestock activities at census night)
 - √ Block/segment
 - ✓ Group of households (2nd stage)

Sampling designs for livestock surveys

- √2nd&3rd stage sampling units:
 - √ Households (with livestock activities)
 - ✓ Livestock holdings/holders/slaughter house (distribute sample across products, say milk, egg, meat, wool)
 - ✓ Animals (distribute sample size across "products*type" of animal)
- ✓ Selection method:
 - ✓ PPS (if measure of size available; # of holdings/households, livestock unit/number)
 - ✓ SRSWOR/SYS
 - √ Full enumeration

Sampling designs for livestock surveys

- ✓ Sample size allocation:
 - ✓ Proportional to number of
 - √ Holdings/holders
 - ✓ Livestock
 - ✓ households
 - ✓ Neyman/optimum
 - ✓ Obtaining information on variance/cost/correlation from last surveys

- Survey objectives: Produce statistics on livestock activities at province level
 - ✓ Parameters: total number of (holdings, holders, sheep, goat, cow, buffalo, camel, milch cow), total production of milk, total employees, total feeding (by type)
- √ Target population: total active holdings in the country

A real scenario; Country A

- ✓ Sampling Frame: Obtained from latest agriculture census (conducted five years ago):
 - ✓ First stage: list of all villages and towns with livestock activities at census night
 - ✓ Second stage:

Urban

• All holdings active at census night

Rural

- All holdings active at survey reference time
- Obtained from listing

- √ Sampling design: Two stage stratified sampling
 - ✓ First stage: villages/towns stratified in each province based on livestock unit (LU) at census night. Then selected with SRSWOR.

LU=sheep+o.8*(goat)+7.28*(buffalo)+6.29*(cow)+6*(camel)

✓ second stage: holdings are further stratified in two groups; large & Small

Large holding

- More than 120 sheep/goat; OR
- More than 20 cow/buffalo/camel

A real scenario; Country A

- ✓ second stage: holdings are further stratified in two groups; large & Small
- ✓ All large holdings are surveyed in selected PSU
- ✓ Small holdings: SRSWOR in selected towns and Systematic in selected villages

✓ Sample size at the first stage in each province:

$$n = \frac{\left(\sum_{h=1}^{H} N_h S_h\right)^2}{(rY)^2 + \sum_{h=1}^{H} N_h S_h^2}$$

n is allocated to strata by using Neyman allocation method

- √ r= maximum relative error of total LU in province
- ✓ Y= total UL S_h =standard deviation of LU variable in stratum h
- \checkmark N_h=number of PSUs in stratum h

A real scenario; Country A

✓ Sample size allocation to strata:

$$n_h = n \times \frac{N_h S_h}{\sum_{h=1}^{H} N_h S_h}$$

- ✓ Expected sample size at 2^{nd} stage: $m = M^L + m^s$
- M^L: Expected number of large holdings in selected PSUs (full enumeration)
- m^s: Expected sample size for small holdings

✓ Allocation of sample size at 2nd stage:

$$m_h^s = m^s \frac{M_h^s S_h'}{\sum_{h=1}^H M_h^s S_h'}$$

 \checkmark S'_h = standard deviation of LU among small units in stratum h

A different scenario

- ✓ Survey objectives: estimation of major livestock products; milk, eggs, wool and meat
- ✓ Approach: integrated approach for simultaneous estimation of all these products in a single survey (sample spread over 3 seasons)
- ✓ Design: three-stage stratified random sampling

Village

HH cluster

Animal (except layers)

A different scenario

√ Sampling at 2nd stage: SRSWOR

Example:

* Milk: 4 clusters of 2 households each

* Eggs: 4 clusters of 5 households each

*Wool: Sample of 8 households (Flocks)

* Meat: 2 recognized slaughter houses

A different scenario

✓ Sampling at 3rd stage: SRSWOR

Example:

* Milk: Two cows and/or buffalos in milk and all goats in milk

* Eggs: All the laying birds

*Wool: Two rams, two ewes, two lambs

* Meat: Three sheep, three goats, three pigs

