

Modeling approaches for the allocation of costs

Regional Training Course on Agricultural Cost of Production Statistics 21–25 November 2016, Daejeon, Republic of Korea

1 - Introduction and rationale

- Models (statistical, econometric, etc.) generally make a more efficient use of auxiliary information than rule-based procedures (which are also models, but more rudimentary)
- They can improve the precision and accuracy of the estimates if:
 - They are used appropriately
 - o The data required for the modeling is available
 - o The assumptions are plausible (compare with assumptions made by other allocation methods)
- Models are generally more flexible than rule-based procedures
 - ⇒ The results are less dependent on the analysts' subjectivity

2 – Types of models

Statistical imputation techniques:

- Nearest neighbor imputation, interpolation, etc.
- o These methods can be used if a sufficient pool of questionnaires with detailed data on costs by commodity exists.

• Econometric models:

- o In general, their objective is to estimate commodity-specific technical coefficients
- o They are based on a certain number of assumptions
- In the most sophisticated models, some of the most restrictive assumptions can be relaxed

3 - Statistical imputation techniques (1/3)

- Statistical methods that use data from a sub-set of the sample or from other surveys/censuses for which detailed activity data is available to estimate commodity-specific CoP
- **Nearest neighbor imputation** is the most common method:
 - Hot-deck imputation: missing records (activity-specific CoP) are estimated from "similar" records from the same survey (hot-deck imputation)
 - o Cold-deck or donor-based imputation : when data from other surveys are used
- The difficulty resides in identifying the matching records (the nearest neighbors)

3 – Statistical imputation techniques (2/3)

CoP Survey

CoP data	Com 1	Com 2		Com p	Farm
Farm 1	χ	X	χ	X	X
Farm 2	χ	X	χ	X	X
	χ	X	χ	X	X
Farm k	X	X	χ	X	X
Farm k+1	na	na	na	na	X
	na	na	na	na	X
Farm n	na	na	na	na	X

Other survey

CoP data	Com 1	Com 2		Com p	Farm
Farm 1	X	Х	X	X	Х
Farm 2 	X	Х	X	Х	Х
	Х	Х	X	Х	Х
Farm m	Х	Х	X	Х	Х

Missing records estimated from records from another survey (cold-deck)

3 - Statistical imputation techniques (3/3)

- Step 1: Obtain commodity specific data on CoP
- Step 2: **Identify the variables on which the matching will be realized** (size, region, etc.). They have to be correlated with CoP but not between them
- Step 3: Identify the distance used to identify nearest neighbors
- Step4: **Define the procedure (function) used for the imputation**:
 - o Simple average, median
 - oMin, max, etc.

4 – The standard econometric model (1/2)

• The model estimates commodity-specific CoP under the assumption that input use is linearly dependent on the quantities produced and that inputs are not substitutable:

Amount of

- The model simply formalizes the fact that:
 - o The total amount of input consumed by a farm should be equal to the sum of the input uses across all the activities of the farm, and that:
 - This relationship is true but subject to measurement errors and gaps in the data

4 – The standard econometric model (2/2)

• Data requirements:

- o Survey data on farm-level input costs and output by commodity
- Sufficient number of farms and combinations of inputs and outputs is required in order to estimate technical coefficients
- Estimation techniques (depending on how the data is structured):
 - oMCO or Generalized MCO
 - Adapted methods for panel data (Between, Within, etc.)

• Limitations:

- o This technique may lead to obvious errors: negative technical coefficients, estimates outside reasonable bounds, etc.
- The use of more sophisticated models, such as entropy-based approaches, can eliminate some of these errors

5 - Entropy-based regressions (1/2)

- Rationale: making use of prior information on:
 - o Technical coefficients: minimum and maximum bounds, etc.
 - o The existence of constraints: accounting equations, etc.
 - => To improve the quality of the estimations

• Main assumptions:

- o The unknown technical coefficients are a random variable
- o Auxiliary information can be used to bound the technical coefficients and provide a set of plausible values
- Additional prior information is available (accounting equations, nonnegativity constraints, etc.)
- **Estimation procedure** (idea): the coefficients minimize the distance between the "true" probability distribution of the technical coefficients and the prior probability distribution

5 - Entropy-based regressions (2/2)

- Data requirements (minimal):
 - o Survey data on farm-level output and input
 - o Information on plausible values for the technical coefficients
- Advantages: cost-effective and statistically sound way to estimate commodity CoP

• Limitations:

- o Complexity: the implementation of this method requires advanced statistical knowledge and experience
- \circ *R* is one of the very few software proposing ready-to-use packages for entropy-based estimations

6 – Examples of model use

- Several references on model-based methods to estimate commodity CoP:
 - Fragoso (2011): estimation of commodity-specific technical coefficients from the 2004 FADN database for a Portuguese region: prior information on the cost structure considerably improved the estimates
 - o Peeters (2002): similar model to undertake cost-allocation for a small number of dairy-beef farms in Brittany (France).
- The results clearly show the superiority of these methods with respect to more rudimentary approaches (rule-based, etc.).
- However, these modeling tools are very little used to produce national-level official statistics. This may be due to:
 - o A lack of data and prior information on the parameters and variables
 - o A lack of capacity to implement these methods and/or
 - o A defiance with respect to modeling tools in general

7 - References

- The FACEPA project, European Union (7th Framework Program)
 The FACEPA project develops tools and methods to analyze production costs in European agriculture using FADN (Farm Accountancy Data Network) data
- Fragoso and Carvalho (2011), Estimation of Cost Allocation Coefficients at the Farm Level Using and Entropy Approach
- Desbois (2006), Méthodologie d'estimation des coûts de production agricole : comparaison de deux méthodes sur la base du RICA, Revue MODULAD, num. 35
- Peeters and Surry (2002), Generalized Cross Entropy Estimation of a Varying-Coefficients Model of Cost Allocation in a Multi-Product Farming, Symposium on Maximum entropy approaches to modeling agricultural diversity in European agriculture
- CEoptim, Cross-entropy R package for optimization