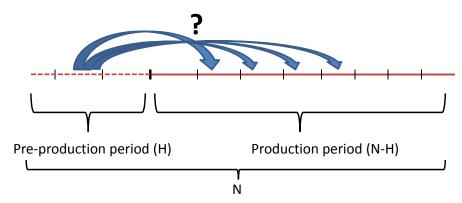


Allocating pre-production costs in multi-year enterprises

Regional Training Course on Agricultural Cost of Production Statistics 21–25 November 2016, Daejeon, Republic of Korea

1 – What are pre-production costs?


- Pre-production costs are incurred at least one year in advance of the time period when the commodity is actually produced and can be sold on the market
- They are also called **establishment or installation costs**
- **AEAA Handbook definition**: "The pre-productive period begins with the first expense associated with establishing the crop enterprise and ends in the crop year just before the crop yields a substantial percent of its expected mature yield (usually 70-80%)"

• Examples:

- o Establishment of a new coffee plantation: preparation of the soil, buying and planting the coffee trees, expenses related to tree nursery, etc.
- o Establishment of a new orchard for the production of flowers, etc.

2 - Why pre-production costs should be allocated?

- To obtain relevant and comparable cost and revenue estimates, preproduction expenses need to be allocated to the year or years in which production takes place
- For production which are entirely harvested in a single-year (ex: annual crops), all the pre-production costs are allocated to this production year
- When production is distributed over several years (ex: plantations, orchards, perennial crops), the question becomes more complex

3 - Concepts and definitions (1/2)

- What costs should be allocated?
 - o All cost items (direct, indirect, labour, land, capital)
 - o They should be estimated using the same methodologies as those described in this training (and in the Manual)
- **Secondary products**: the revenues and costs associated with the selling of secondary products during the pre-productive years (ex: banana production on cacao plantations) should be added/deducted to/from preproduction costs
- The production of the commodity before it reaches its mature yield should also be accounted for and valued

3 - Concepts and definitions (2/2)

- When there is a substantial lag between the moment costs are incurred and production effectively takes place:
- => it is important adjust nominal costs for inflation
- Pre-production costs = the net returns during the pre-productive years adjusted to the end of the pre-productive period:

$$PPC = \sum_{t=1}^{H} (1+i)^{H-t} R_t$$

- Rt is the difference between revenues and costs in year t (= net returns, usually negative during the preproduction period)
- o H is the length in years of the pre-productive period
- o i is the annual inflation rate

4 – The traditional budgeting method (1/2)

• Accumulated costs (capital and non-capital) are allocated to the productive years using a **linear depreciation schedule**:

$$D = \frac{PPC - SV}{N - H}$$

- •D is the portion of the establishment costs that will be charged against each productive year
- N-H is the length in years of the productive period (N is the total life span of the enterprise)
- SV is the value of the enterprise, excluding land, at the end of its productive cycle (salvage value)

4 – The traditional budgeting method (2/2)

• Time adjustments:

o PPC and SV should be expressed in the prices referring to the last preproductive year

o The amounts charged to each production year should be expressed in current prices: $D_{i} = D(1+i)^{t}$

• Advantages:

- o Easy to implement and understandable
- o Similar to what is usually done to estimate capital depreciation

• Drawbacks:

- o Is the linear depreciation schedule a realistic/appropriate one?
- o The determination of SV is not easy

5 – The cost recovery (or annuity) approach (1/3)

The accumulated total is amortized over the production period using an annuity formula

• The annual amount to be charged against each production year (A) is such that:

$$PPC - \frac{SV}{(1+r)^{N-H}} = \sum_{t=H+1}^{N} \frac{A}{(1+r)^{t}}$$
Net PPC at end of the preproduction period prices ("present")

Present value of the amount to be charged

• It follows that:
$$A = \frac{r}{1 - (1 + r)^{H - N}} NetPPC$$

5 – The cost recovery (or annuity) approach (2/3)

• **Time adjustments**: the amounts A charged to each production year need to be adjusted for inflation only if r is a real interest rate (i.e. excluding inflation)

Advantages:

- o It is consistent with business accounting practices
- o It is economically founded

• Limitations:

- o Determining SV (an option could be 0)
- Sensitivity to the choice of the interest rate r

5 – The cost recovery (or annuity) approach (3/3)

Example: installation costs of a new coffee plantation in Colombia

Assumptions

- H = 3 (marginal production starts at year 2, neglected here)
- N-H = 7 (variable depending on production type)
- or (nominal interest rate) = 15%
- SV = 0 (excluding the value of land, the remaining is biomass)
- o PPC = 9.000.000 COL per hectare

Results:

- \circ **Net PPC** = 9.000.000 per hectare (SV is 0)
- \circ **A =** 2.163.243 per hectare (~ 720 USD)
- -> This amount is charged against the revenues of each production year

6 – The current cost approach (1/2)

- Adapted to situations where the farm is at the production equilibrium or steady-state, i.e. having reached the maximum of its potential yield
- Allocated PPCs are determined as a share of current costs (CC)
- This share is closely related to the steady-state replacement rate of the assets, for examples:
 - o 5% of a herd may need to be replaced annually to maintain stable the number of heads
 - \circ 10% of a plantation may have to be renewed each year to maintain a stable average plantation age (and therefore yield)

6 – The current cost approach (2/2)

The calculation are done in 4 steps:

- Step 1: **determine the ratio** r = **PPC/CC** (assumed to be fixed for a given time period under the assumption of fixed technology)
 - CC = change in asset value + operating costs associated with these assets
 - o This operation has to be done with data spanning a sufficiently large time period (e.g. average of 3 years) to reduce the risk that outlier observations might distort the ratio
- Step 2: apply r to the estimated annual current costs CC(t)
- Step 3: r.CC(t) is charged against production for the year t

7 - Market value approach

- Similar to the CC method, with the **PPC estimated using opportunity costs (market values)** instead of actual costs:
 - o PPC are estimated as the foregone revenues from the selling of the assets (livestock, trees, etc.) instead of holding them
 - o For example, market prices for replacement animals are used to estimate PPC for a livestock farm, as opposed to building up the actual costs associated with livestock breeding herd
- Advantage: ease of implementation; particularly adapted for livestock pre-production expenses
- Drawbacks:
 - Markets might not exist or may be too thin, in which case the current cost method may be used
 - Market valuations might be biased towards future earnings and not historical costs

8 - Yield or production-based allocation (1/3)

- It is an allocation rule based on a non-linear depreciation schedule
- PPC calculation:
 - o Establishment expenses comprise capital as well as variable costs
 - Production occurring during the pre-production period for the main commodity are not deducted from PPC
- The amount to charge against each production year is proportional to the share of current production in the total expected production for the productive years:

$$D(t) = PPC \cdot \left[\frac{Q(t)}{\sum_{t=H+1}^{N} Q(t)} \right]$$

8 – Yield or production-based allocation (2/3)

• Example: N=10, H=3, PPC=500

	Years	Production shares (%)	Allocated PPC (D)
Pre- production ¬ years	1	0	0
	2	0	0
	3	0	0
	4	10	50
	5	10	50
Production _ years	6	20	100
	7	30	150
	8	20	100
	9	5	25
	10	5	25

8 – Yield or production-based allocation (3/3)

• Advantages:

- o Easy to implement and intuitive
- o Assumes a non-linear depreciation schedule, reflective of the farm's production cycle

• Drawbacks:

- o It is dependent on the schedule assumed for yields, which varies necessarily across varieties, regions, etc.
- o It has to be refined to include revenues and costs associated with secondary commodities

9 - References

- AAEA Task Force on Commodity Costs and Returns (2000). *Commodity Costs and Returns Estimation Handbook*. United States Department of Agriculture: Ames, Iowa, USA.
- Global Strategy to Improve Agricultural and Rural Statistics (2016), Handbook on Agricultural Cost of Production Statistics, Handbook and Guidelines, pp. 80-84. FAO: Rome.