

Data collection vehicles: towards and integrated agricultural survey system

Regional Training Course on Agricultural Cost of Production Statistics 21–25 November 2016, Daejeon, Republic of Korea

1 – General recommendations

- Ensure quality at all levels: conception, data collection, processing, data analysis and dissemination
- A permanent quality monitoring program and continuous improvements
- **Test all data collection tools and methods** before launching the data collection operations.
- Have a complete and up-to-date farm records.
- Disseminate widely and freely data and metadata.
- **Develop and maintain linkages** between statisticians, respondents and data users.

2 - Choice of the data collection method (1/2)

Mainly depends on:

- Objective(s) of the analysis
- Budgets and financial resources
- Human resources and technical expertise
- Legal requirements
- Existing strategic frameworks or policies.

2 - Choice of the data collection method (2/2)

Source: Handbook of cost of production statistics, page 25

3 - Questionnaire design: general information

- Questions need to be designed according to:
 - o **Respondent's capacity to answer the questions,** related to his level of education/literacy
 - o The level of detail and sophistication of farm records.
- Cross-checking the responses allows to verify and validate the information provided by the respondent: eg. Consistency in fertilizers input per ha, etc.
- A first data check on the field by the enumerator helps reduce the major part of errors related to the complexity of the questionnaire.

3 – Key parameters of a data collection strategy

- **Sector coverage :** which enterprises and which activities.
- Geographical coverage: national or sub-national
- Frequency of the data collection
- Observation, analysis and sampling units
 - -> The choice of a unit of observation is crucial: It shall determine the data quality (is the the respondent able to answer?), the data comparability and reusability (in household surveys, for example)
- **Reference period**: crop year, calendar year, quarter, etc.

4 – Choice of the data collection frequency

Mainly depends on:

- The variability of the phenomenon: annual production cycle, stable agricultural practices, etc.
- The existence of regulatory requirements, national or international, that are dictating the frequency to adopt.
- The line with the practices of the statistical agency: the habit of undertaking an annual survey...
- The line of the available human and financial resources : for instance, do they allow to undertake a specific annual survey or only every second or third year?
- The implication in terms of the respondent burden : are the respondents already involved in one or in several surveys?

5 – Specific CoP surveys (1/2)

• Also called **stand-alone surveys**: the objective is to undertake a survey focused on the topic of cost of production.

Main advantages include:

- A better targeting and a better coverage of the population of interest.
- o **A sampling procedure adapted** to the objective of the CoP estimate, and possibly less complex than the multiple objective surveys.
- o **A survey period** adapted to the farmers practices.
- A better training of the enumerator on the CoP topics, which usually involves complex concepts.

5 – Specific CoP surveys (2/2)

- The main drawbacks are:
 - o Like any other additional survey, it results in:
 - Additional costs
 - A logistical and organisational challenge
 - An additional respondents burden.
- Difficulty in ensuring consistency between the various concepts used in the various surveys
- This lack of integration affects:
 - Data comparability
 - The possibilities of reuse and crossing with other data

6 – Multipurpose surveys

- Also called **omnibus surveys**:
 - o It is a survey where CoP estimate is one of the objectives (alongside with the output measurement, for example).
 - oThe survey may be carried out once or, in most cases, sequentially in several rounds.
- The benefits correspond to the disadvantages of the stand-alone survey... and vice versa.
- A multi-purpose survey is heavier to manage than a specific CoP survey: the benefit of integration on the quality of answers can be diminished by the negative effects related to the length of the questionnaire.

7 – Towards an integrated survey strategy (1/3)

- Whether they have one specific goal or more, CoP surveys must be part of **an integrated survey system**.
- An integrated survey system consists mainly, for each survey, in:
 - o Meet a set of standards, classifications and common concepts
 - Adopt an survey strategy based on common records and appropriate sampling methods
- This holistic approach is recommended by the United Nations Statistics Division.

7 – Towards an integrated survey strategy (2/3)

In addition to these general principles, the specificity of this Integrated Survey System for Agriculture (AGRIS) is to:

- Propose a surveys sequence between two agricultural census about 10 years
- Use multiple sample frames (list / area frame) to identify and georeference agricultural households and commercial
- Set a basic data set to collect and complementary themes.
- Make use of auxiliary data sources: administrative, professional organizations, private sector, etc.
- Adopt a wide and open data dissemination strategy, for microdata and metadata.

7 – Towards an integrated survey strategy (3/3)

Example of an agricultural integrated survey system

	Years	0	1	2	3	4	5	6	7	8	9	10
Agricultural Census		•										
AGRIS Core Module	AH Roster		•	•	•	•	•	•	•	•	•	•
	Crop production		•	•	•	•	•	•	•	•	•	•
	Livestock production		•	•	•	•	•	•	•	•	•	•
AGRIS Rot. Module 1	Economy				•		•		•		•	
AGRIS Rot. Module 2	Labour force			•				•				•
AGRIS Rot. Module 3	Machinery and equipment					•				•		
AGRIS Rot. Module 4	Production methods and environment				•			•				•
Source: AGRIS, FAO												
		- 4	Cost of Production									

8 – Other data collection methods

- "Typical" or "representative" farms.
- **Hybrid approaches** survey + typical farms.
- Model based methods.
- Methods based on **auxiliary data** : administrative, private sector, etc.
- -> These methods will be substantiated in specific presentations.

9 – References

- Global Strategy to Improve Agricultural and Rural Statistics (2016), Handbook on Agricultural Cost of Production Statistics, Handbook and Guidelines, pp.27-32. FAO: Rome.
- Global Strategy to Improve Agricultural and Rural Statistics (2015), Handbook on Master Sampling Frames for Agricultural Statistics, Handbook and Guidelines. FAO: Rome.
- Global Strategy to Improve Agricultural and Rural Statistics (2015), Guidelines for the Integrated Survey Framework, Handbook and Guidelines. FAO: Rome.
- Statistics Division of the United Nations (2013), Guidelines on Integrated Economic Statistics, Economic and Social Affairs. UN: New-York