

Sample design strategies

Regional Training Course on Agricultural Cost of Production
Statistics

21-25 November 2016, Daejeon, Republic of Korea

1 – Definitions and general remarks

- Surveys, censuses and administrative records are the 3 main data sources for agricultural data:
 - => Sampling design is one of interrelated elements of survey design and must be developed in relation to these elements
- •A sample is a subset of the units defining the universe of the population of interest
- Well-designed samples have the capability of making inferences to the **population** with known probabilities of selection and measures of sampling variability
- Well-designed samples for national estimates will require a surprisingly small number of farms (cf. GS Handbook on Master Sampling Frame)
- To obtain these benefits, some basic principles on sampling design have to be respected

2 – What is a good sample?

- A good sample should:
 - Adequately cover the population of interest
 - o Be small enough to limit survey costs and complexity but
 - o Large enough to provide results with an acceptable error level
- The quality of the sample is dependent on:
 - The quality and exhaustivity of the frame from which the sample is drawn
 - o if the frame is incomplete and/or biased towards certain activities, the sample will also suffer from the same shortcomings.

3 - A few words on sample frames (1/2)

- A sample frame is the set of all the units defining the universe of the population of interest. Examples:
 - o All farms with an area larger than 3 ha
 - o All commercial farms
 - All small-scale cacao plantations, etc.
- Units can be areas or segments: area frame
- Units can be codes defining an individual, household, farm, etc.: list frames
- Area frames are generally more exhaustive than list frames
- List frames tend to be more precise than area frames (the actual unit is directly identified, as opposed to groups or fractions of units for area frames)

3 – A few words on sample frames (2/2)

- Samples can be drawn from list or area frames:
 - o individually (for the later, usually in several stages), or
 - o in combination, the most frequent case in agricultural surveys
- A classical sampling procedure for an agricultural survey :
 - The national territory is first partitioned in large zones (ex: regions);
 - Within each of these regions, a sample of sub-zones is randomly selected (ex: municipalities);
 - Within each of the sampled sub-zones, the list of all household involved in farming activities is established;
 - o Finally, a sample of these households is randomly selected for the purpose of the survey.

4 – Elements of sampling design (1/2)

Sample design has two aspects:

- A selection component: rules and operations of including members of the population into the sample
- => The accuracy of the sample design rests on two elements :
 - The sampling frame used (or developed) should be as complete, correct and current as possible, and
 - o Appropriate sample selection techniques

4 - Elements of sampling design (2/2)

- An estimation component: computing sample statistics, which are sample estimates of population values
- => Four points are essential in the estimation process:
 - oThe specification of the (function of) parameter(s) to be estimated;
 - An estimator of the (function of) parameter(s);
 - The variance of the estimator of the (function of) parameter(s);
 - An estimate of the variance of the estimator of the (function of) parameter(s)

5 - Sample designs: Random stratified sampling (1/2)

In its simplest version, this method consists in:

- Partitioning the population of interest, on the basis of one or more auxiliary variables: farm size, commodity produced, region, etc
- Within each group (stratum), a sample of units is randomly selected: the sample of the survey is therefore the sum of the strata-samples
- The advantages of the stratification is that:
 - o for a given sample error, the sample size and budget can be reduced compared to simple random sampling
 - o Conversely, with a given budget and sample size, stratification permits a reduction in sample variance.

5 - Sample designs: Random stratified sampling (2/2)

- Generally, the size of the strata-samples is chosen to be proportional to the size of the strata (PPS Probability Proportional to Size):
 - o If the a stratum comprises 20% of the universe, the corresponding strata-sample will represent 20% of the total sample
 - o This is what is generally referred to as "representative" sampling
 - The sampling rate for each strata is equal to the sampling rate in the population:

 $nh/Nh = n/N \Leftrightarrow nh/n=Nh/N$

- Systematic sampling is often used to select the units of the sample:
 - \circ The sampling step is k=N/n, where n is the sample size and N the population size
 - A random number *r* comprised between 1 and *k* is chosen
 - The sequence {*r*,*r*+*k*,*r*+2*k*,....,*r*+*nk*} is the selected sample

6 - Sample designs: Multistage stratified sampling (1/2)

- Multi-stage sampling is when samples are drawn iteratively (samples of samples)
- This sampling procedure is also often referred to as cluster sampling
- An example of three-step stratified sampling procedure combining area and list frames frequently used in agricultural surveys:
 - Step 1: within each administrative region, a number of enumeration zones (primary sampling units) is randomly selected;
 - o Step 2: within each selected enumeration zone, a number of villages (secondary sampling units) is randomly selected (the full list of villages is obtained from the previous population census);
 - o Step 3: within each selected village, all the households involved in agricultural activities (final sampling units, list obtained from the population census) are selected for the survey.

6 - Sample designs: Multistage stratified sampling (2/2)

Advantages :

- o **Less costly**: it is not necessary to have the auxiliary information for all the units of the population
- o **Ensures statistical representativeness** at different levels: provinces and country, for example
- o More precise than simple stratified sampling
- o **More secure**: all provinces/regions are certain to be represented in the sample as long as they are used as stratification variables
- Main disadvantage: **the sample size is unknown** because each sampling unit is randomly selected and has a variable size. Implications:
 - o The budget cannot be determined beforehand; and
 - \circ The computation of sampling errors for the mean of the variable of interest (m=y/n) is complex because it is a ratio of two random variables.

7 – Determination of the sample size (1/2)

- The sample size *n* is directly related to the desired precision of the results:
 - O Assuming the objective is to estimate m=y/n, the Central Limit Theorem says that there is a 95% chance that m lies between m-2*sig/n and m+2*sig/n, where sig the estimated standard-deviation of the variable of interest in the population.
 - \circ If sig is known and the width of the confidence interval is set (to r units) n is determined by: 4*sig/n=r
 - o sig (or var) is known for simple random designs and simple estimators
 - o Example: for simple random sampling, the variance of mean of the objective variable is: var(m)=(1-f)siq(y)/n

7 – Determination of the sample size (2/2)

- Sample size is a pivotal feature in overall sample design:
 - o It depends on survey objectives, resources, desired precision, anticipated non-response...
 - o It determines the number of data collectors to hire and their work load, etc.
- •The sample size has direct implications on the budget of the survey:
 - o **Survey costs have a fixed component**: cost of installations, cost of statisticians at headquarters, etc.
 - o **and variable component**, measuring the cost of surveying one additional unit: travel costs of interviewers, paper, etc.
- The sample size is in practice the result of the compromise between budget and precision/accuracy.

8 – Putting the pieces together (1/2)

To obtain the desired results, the sampling design must:

- **Be stratified** to have a good representativeness and control of the sample size over population subgroups;
- Be based on a complete, accurate and up-to-date sample frame, to obtain maximum accuracy;
- Use of selection and estimation techniques that minimize bias and maximize accuracy;
- Be measurable (known probabilities of selection) so that sampling errors can be estimated to provide users with a reliable error measure of the results

8 – Putting the pieces together (2/2)

The sampling must:

- **Be done in stages** to efficiently choose elements of the population of interest
- Be multistage if necessary to reduce cost
- Make a wise use of clusters of elements (balance between cost reduction and precision)
- Have a sample with an appropriate size so that costs and precision are optimally controlled

9 - References

- Handbook on agricultural cost of production statistics (Draft), Global Strategy Publications, 2012
- Sampling Methods for Agricultural Surveys (1989), FAO Statistical Development Series 3, FAO, Rome. Accessible online at: http://www.fao.org/fileadmin/templates/ess/ess test folder/Publications/S DS/3 sampling method for agricultural survey.pdf

10 – Annex: an optimal sample size

An "optimal" sample size may be determined using the following approach:

- **Determine a desired sample size** associated with a simple random sampling design:
 - SamplingError(y)_{SRS} = (1-n/N).Variance(y), which implies:
 n = n'/[1+n'/N] where n' = Variance(y) / SamplingError(y)_{SRS}
- Adjust this sample size using the relative precision of the design at hand compared to the simple random design (Deff coefficient):
 - o Deff = SamplingError(y) / SamplingError(y)srs
 - o n'final = Deff. n'
 - $o n_{final} = n'_{final}/[1+n'_{final}/N]$