Pacific Training on Sampling Methods for Producing Core Data Items for Agricultural and Rural Statistics

13-17 August, Suva, Fiji

Module 2: Review of Basics of Sampling Methods
Session 2.1: Terminology, Concepts and Definitions

By
Chris Ryan
Statistician (ESCAP Pacific Office)

Topics Covered

- * Steps to Survey Design
- * Survey Objectives
- * Population of interest
- * Target v Sample Population
- * Survey Outputs
- * Survey Units
- * Methods of measurement
- * Levels of Interest domains
- * Sample Size

Statistical Survey Design – Steps involved

Survey Objectives

- The starting point of any survey, whether it be a census or sample survey, is to determine the objectives
 - * All objectives
 - * Not just the main ones
- There are generally numerous objectives associated with a survey
 - * Eg, HIES
 - * Re-base CPI
 - * Provide inputs into National Accounts
 - Poverty Analysis
 - * Analyze the importance of Agriculture and Fisheries to Household Income

Survey Objectives (cont)

- * How do we achieve this?
 - * Need to undertake discussions with key users
- * Who are the key users?
 - * They're the people pushing for the survey to take place
- * The process may involve numerous discussions over a period of time
 - * BUT IT'S IMPORTANT TO GET IT RIGHT!!

Survey Objectives (cont)

- * It's often the role of the Survey Statistician to assist the key users with determining survey objectives
- * Why?
 - * Often key users aren't exactly sure what they want or can get from the survey
 - The Survey Statistician is often in a better position to know what is feasible (experience)
 - Costs and Timing are often important factors
 - * An area of the Survey Statistician's experience

Target Population v Sample Population

The key first stage of any survey design is knowing the population you wish to make statements about. The population could be anything:

- * Small businesses (50 or less employees)
- * All households in the urban population of a country
- * Households involved in Fishing activities in rural communities

Population of Interest (cont)

- There are different types of populations
 - * Target population
 - Sample population
- * Target population
 - * The set of units we want to collect information from Scope
- * Survey population
 - * The set of units we can collect information from Coverage
- * Ideally we want Target population = Survey population

Target Population v Sample Population

Examples of differences

- Remote islands with very small populations not covered
- Homeless people not included in a household Labour Force Survey

Survey Outputs

- * Once the Survey Objectives & Population of interest have been determined, the desirable survey outputs should be drafted
- * These outputs may be in the form of:
 - * Tables
 - Graphs
 - * Summary Statistics
- * The outputs should relate directly to ALL the objectives of the survey

Survey Outputs

- * Outputs should be drafted up to meet all the survey objectives
- * If an output is produced which doesn't relate to the survey objectives then either:
 - * Add it to the survey objectives if it is required or
 - * Delete the output

The survey units

- * There are different types of survey units:
 - * Selection Unit
 - * Reporting Unit
 - * Tabulation Unit
- * Usually these units are the same but not always

The survey units

- * Selection Unit: The unit in the sample that is selected
- * Reporting Unit: The unit that responds to the survey
- * Tabulation Unit: The unit for which results are presented

Example of different units for a survey (HIES)

- * Select Dwellings in the survey
- * Individuals & Households Report to the survey
- * Tabulate Household results

Method of measurement

- * The are numerous ways to collect the information
- * Some common methods are:
 - * Face-to-face interview
 - * Self enumeration
 - * Mail out survey form
 - * Phone interview
 - * Administrative records

Method of measurement

- * The choice of measurement depends on:
 - * The most effective way to get accurate results
 - Cost constraints
 - Time constraints
 - Confidentiality issues
- Many surveys conducted outside the Government (in particular the NSO), ignore the first point and produce unreliable results

Levels of interest (Domains)

- * Who do you want to produce results for?
- * Is it Agricultural Farmers as a whole, or is it more important to produce results for sub-populations for comparative reasons. For example:
 - * By geographical region
 - * Urban/Rural, Province, Village, etc
 - * By size of farm
 - * By type of produce
- The more sub-populations you wish to produce information for the larger the sample size would be.
 - The smaller the sub-population that you have, the larger the sample fraction you are required to select.

Sample Size

Factors which impact on sample size

- * Population Size
- * Accuracy requirements
- * Sample selection methodology
- * Domains of interest
- * Degree of variation in data being collected

Determining the Sample Size

- * In theory, the correct way to determine the sample size for a survey is:
 - * Identify the key variables in the survey
 - * Determine the accuracy requirements for these variables
 - * Select a sample large enough to meet these requirements

NB: the sample selection methodology also impacts on the size of the sample required

Determining the Sample Size

For a simple random sample the formula is:

$$n \ge \frac{1}{\left(\frac{1}{N} + \frac{RSE(\hat{Y})^2 \times \hat{Y}^2}{s^2}\right)}$$

n = Sample size $\hat{\overline{Y}} = Estimate of mean of variable Y$

N = Population size $S^2 = Measure of spread of variable Y$

 $RSE(\hat{Y}) = Accuracy requirement of variable Y$

Determining the Sample Size

- * In reality, you generally don't have previous survey data of sufficient quality in which to undertake the necessary calculations
- * So what happens?
 - * The finances available for the survey generally control the sample size (within reason)
 - * You make an educated guess to some degree as to what an appropriate sample size will be

