Pacific Training on Sampling Methods for Producing Core Data Items for Agricultural and Rural Statistics

13-17 August, Suva, Fiji

Module 2: Review of Basics of Sampling Methods
Session 2.3: Simple Random Sampling

By
Chris Ryan
Statistician (ESCAP Pacific Office)

Topics Covered

- * What is Simple Random Sampling (SRS)
- Advantage and Disadvantages of SRS
- * What a good SRS looks like
- * Producing Estimates for SRS

Simple Random Sampling (SRS)

- * This is the most basic type of sampling
- * In SRS, every unit in the sample population has the same chance of selection

(NB: and only one chance of selection)

- * Random numbers are usually generated and assigned to each sample population unit in order to select the sample
- * To produce a random number between o and 1 in excel type =rand()
- * To produce a random number between o and 100 in excel type =rand()*100

Simple Random Sampling (SRS)

How many different types of sample can we have?

* In total there are N!/[(N-n)!n!] different samples which can be selected from the population

```
N – population size
```

n - sample size

If N = 10, n = 4

* Number of different samples

```
= (10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)/[(6 \times 5 \times 4 \times 3 \times 2 \times 1) \times (4 \times 3 \times 2 \times 1)]
= 210
```

If N = 100, n = 30

* Number of different samples = 2.93723 X 10²⁵

Advantages & Disadvantages of SRS

* Advantages

- * It's simple just need to generate a random number and use this for selection (provided you have a complete list of units)
- * Generally produces low SE's

Disadvantages

- * Can be costly if the sample is well spread out geographically
- * Can't control the representativeness of the sample
 - * Can't control the sample for sub-populations
 - * Sample may be highly skewed to one area

Producing estimates for a SRS

- The weight for a simple random sample can be calculated as the population (N) divided by the sample (n)
- * That is, if the population is 200, and a simple random sample of 20 is selected, then the weight is:-

Estimate of a total

$$\hat{Y} = N \times \sum_{i=1}^{n} \frac{y_i}{n}$$
 $= \sum_{i=1}^{n} \frac{N}{n} y_i$ $= \sum_{i=1}^{n} w y_i$

Producing estimates for a SRS (cont)

Estimate of a mean

$$\hat{\overline{Y}} = \sum_{i=1}^{n} \frac{y_i}{n}$$

Estimate of a proportion

$$y_i = \begin{cases} 1 & i^{th} \text{ sample unit has characteristic} \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{Y} = \frac{N}{n} \sum_{i=1}^{n} y_i = \hat{N}_c \qquad \qquad \hat{\overline{Y}} = \frac{1}{n} \sum_{i=1}^{n} y_i = \hat{P}_c$$

$$\hat{\overline{Y}} = \frac{1}{n} \sum_{i=1}^{n} y_i = \hat{P}_c$$

