# Pacific Training on Sampling Methods for Producing Core Data Items for Agricultural and Rural Statistics

13-17 August, Suva, Fiji

Module 2: Review of Basics of Sampling Methods
Session 2.3: Systematic Sampling

By
Chris Ryan
Statistician (ESCAP Pacific Office)







## **Topics Covered**

- \* Different Types of Systematic Sampling
  - Linear systematic sampling
    - \* With N/n = Integer
    - \* Without N/n = integer
  - Circular systematic sampling



## Linear systematic sampling

- Systematic Sampling (SYS), like SRS, involves selecting n sampling units from a population of N units
- \* Instead of randomly choosing the **n** units in the sample, a skip pattern is run through a list (frame) of the **N** units to select the sample
- \* The skip or sampling interval, k = N/n



#### Linear systematic sampling: Selection process

- 1) Form a sequential list of population units
- Decide on a sample size n and compute the skip (sampling interval), k = N/n
- 3) Choose a random number, r (random start) between1 and k (inclusive)
- 4) Add "k" to selected random number to select the second unit and continue to add "k" repeatedly to previously selected unit number to select the remainder of the sample



#### Linear systematic sampling: Selection process

Sample Interval (k = N/n)

1 2 ..... r ..... k .....  $n_2$  .....  $n_3$  ..... etc ..... NSample Intervals  $r = \text{Random Start between 1 and } k = n_1$ 



## Linear systematic sampling

- \* Previous example assumed that k = N/n is an integer
- \* Question: What if k = N/n is NOT an integer?
  - \* Solution 1: Work with decimal places and round
  - \* Solution 2: Circular sampling



#### Example – working with decimals and rounding





## Circular sampling

- Determine the interval k rounding <u>down</u> to the integer nearest to N/n
  - (If N = 15 and n = 4, then k is taken as 3 and not 4)
- 2) Take a random start between 1 and N
- 3) Skip through the circle by **k** units each time to select the next unit until **n** units are selected
- 4) Thus there could be N possible distinct samples instead of k



## Circular sampling illustration

Population = 24, Sample = 5, Skip = Int(24/5=4.6) = 4

1 2 3 4 5 6 7 8

24

23

22

Random start

20 19 18 17 16 15 14 13

## **Estimation with Systematic Sampling**

The weight for a systematic sample is the same as Simple Random Sampling

Estimate of a total

$$\hat{Y} = N \times \sum_{i=1}^n \frac{y_i}{n} \qquad = \sum_{i=1}^n \frac{N}{n} y_i \qquad = \sum_{i=1}^n w y_i$$

Estimate of a mean

$$\hat{\overline{Y}} = \sum_{i=1}^n \frac{y_i}{n}$$



### Estimation with Systematic Sampling (cont)

#### Estimate of a proportion

$$y_i = \begin{cases} 1 & i^{th} \text{ sample unit has characteristic} \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{Y} = \frac{N}{n} \sum_{i=1}^n y_i = \hat{N}_c$$

$$\hat{\overline{Y}} = \frac{1}{n} \sum_{i=1}^n y_i = \hat{P}_c$$

