Pacific Training on Sampling Methods for Producing Core Data Items for Agricultural and Rural Statistics

13-17 August, Suva, Fiji

Module 2: Review of Basics of Sampling Methods
Session 2.7: Standard Errors & Bias

By
Chris Ryan
Statistician (ESCAP Pacific Office)

Topics Covered

- * Things which contribute to the error of an estimate
 - * Sampling error
 - * Non-sampling error
- * Examples of Sampling error formulas
- * What is Bias?
 - * Impact on estimates

How accurate are the estimates

- * There are two main sources of error which impact on the quality of our estimates
 - * Sampling error
 - * Non-sampling error
- * Sampling error the error attributed to the fact that a sample of units were selected for the survey as opposed to a census
- * Non-sampling error all other errors associated with the results

Non-sampling errors

- * Some common forms of non-sampling error include:
 - * Field enumeration error
 - Respondent error
 - * Questionnaire design problems
 - * Data processing errors
 - * Sample selection and response bias
 - * etc

Sampling error

- * As discussed, this is the error in the estimates, generated by taking a sample of units as opposed to complete enumeration
- * Unlike the non-sampling error, which is extremely difficult to measure, we can estimate a measure for the magnitude of the sampling error if we know things like:
 - * Population size
 - * Sample size
 - * Sample selection methodology
 - * Degree of variation in the response data

Sampling Error (cont)

- * In order to determine what the sampling error (or standard error) is for an estimate, we first need to calculate the variance of the estimate
- * The standard error is then simply the square root of the variance

$$SE(Y) = \sqrt{Var(Y)}$$

Sample Error for a Simple Random Sample

$$Var(\hat{Y}) = \frac{N^2}{n} (1 - n/N) s_y^2$$

$$s_y^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}$$

Sampling error

* The formula for the variance of a two-stage survey design involving PPS sampling at the first stage and a fixed cluster size of households at the second stage is:

$$Var(Y) = \frac{M^2}{m} \overline{N} \sigma_b^2 + \frac{N}{n} \sum_{i=1}^{M} N_i \left(1 - \frac{\overline{n}}{N_i} \right) S_i^2$$

Link between Estimate, Sampling Error and Relative Sampling Error

$$SE(\hat{Y}) = SQRT(Var(\hat{Y}))$$

$$RSE(\hat{Y}) = \frac{SE(\hat{Y})}{Est(\hat{Y})} \times 100$$

Interpreting a RSE

- * A user will often want to know how to interpret the accuracy of an estimate, with respect to the RSE
- * If RSE < 5% It's a reliable estimate
- * If 5% < RSE < 10% It's still good
- * If 10% < RSE 20% It's usable
- * If RSE > 20% Not overly reliable

Bias

Definition

- * Bias is occuring if you produce numerous values of the same estimate, and you repeatedly come up with something higher (or lower) than the true value
- * Two main things often contribute to a bias being generated in a survey
 - * Poor sample selection
 - * Non-response

What happens to the estimates?

Scenario 1: Small sample error & small bias

What happens to the estimates?

Scenario 2: Large sample error & small bias

What happens to the estimates?

Scenario 3: Small sample error & large bias

What happens to the estimates?

Scenario 4: Large sample error & Large bias

An example of selection bias

- * Suppose the Department of Fisheries want to run a household survey to determine fish catches by non-commercial fisherman in Samoa
 - * The question they ask relates to the fish catches over the last week
- * Also suppose that Samoa is made up of:
 - * 150 coastal villages
 - * 150 inland villages

An example of selection bias (cont)

- * The Department of Fisheries decide to select only coastal villages because they believe they make-up most of the non-commercial fishing activity
- * Let us assume the following:
 - * Average fish catches by households living in coastal villages for the last week was: 70kg
 - * Average fish catches by households living in inland villages for the last week was: 30kg

An example of selection bias (cont)

* The population and sample counts for the two regions are:

Coastal villages

- * Population: 10,000 households
- * Sample: 1,000 households

Inland villages

- * Population: 10,000 households
- * Sample: o households

An example of selection bias (cont)

The true value of Fish catch

```
True Value (Fish catch) = (10,000 \times 70) + (10,000 \times 30)
= 700,000 + 300,000
= 1,000,000
```

The estimation procedure would be

If the DoF weighted up to the total population

```
Est(Fish catch) = N/n x fish catch in sample
= 20,000/1,000 * (70 x 1,000)
= 1,400,000
```

