

SIAP Training Program for Supporting the Monitoring of Sustainable Development Goals (SDGs) 2030 in the Asia Pacific Region

SDG Indicators under FAO Custodianship

Dorian Kalamvrezos Navarro Programme Advisor, Office of the Chief Statistician

GOAL 6. ENSURE AVAILABILITY AND SUSTAINABLE MANAGEMENT OF WATER AND SANITATION FOR ALL

6.4 By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity

6.4.1 Change in water-use efficiency over time (Tier II)

•6.4.2 Level of water stress: freshwater withdrawal as a proportion of available freshwater resources (Tier I)

They provide complementary information on the efficiency and sustainability of water use

WATER USE

- Depending on diet, between 2,000 and 5,000 litres of water are needed to produce the food consumed daily by one person
- Crops and livestock account for 70% water withdrawals
- 95% in some developing countries
- Expected to increase as world population growth continues
- 2/3 of the world population could be living in water-stressed countries by 2025 if current consumption patterns continue
- Water particularly critical issue in the Arab region numerous ESCWA publications focus of water resource management, including a dedicated biennial Water Development Report

SDG INDICATOR 6.4.1 CHANGE IN WATER-USE EFFICIENCY OVER TIME

DEFINITION AND METHOD OF COMPUTATION

- Defined as the output (value added) of a given major industrial sector divided by the volume of water used, measured in USD/ m3
- Water use: water that is directly abstracted or is received by an industry or households from another industry
- <u>Water abstraction</u>: water removed from a river, lake, reservoir or aquifer
- The terms water use and water abstraction are used to maintain consistency the terminology used in SEEA-Water. "Water abstraction" is a synonym of "<u>water withdrawal</u>", as expressed in SDG target 6.4.
- •Historical time series needed to measure the trend in water use efficiency over time

Food and Agriculture Organization of the United Rations

MAJOR INDUSTRIAL SECTORS

Three major sectors according to ISIC 4

- Agriculture, forestry and fishing (ISIC 4-A)
 - Only GVA from irrigated agriculture
 - Derived from: Irrigated land area * Ratio between irrigated and crop productivity
- Manufacturing, constructions, mining and quarrying (ISIC B, C, D and F)
- Service sector (ISIC E & ISIC G-T)

METHOD OF COMPUTATION

•The indicator is computed as the weighted average of the water efficiency of the three main economic sectors, with weights given by the share of water withdrawn by each sector over the total withdrawals. In formula:

 $WUE = A_{we} \times P_A + M_{we} \times P_M + S_{we} \times P_S$

Indicator is expressed in value/volume, USD/m3 unit

METHOD OF COMPUTATION

- $WUE = A_{we} \times P_A + M_{we} \times P_M + S_{we} \times P_S$
- WUE = Water use efficiency
- A_{we} = Irrigated agriculture water use efficiency [USD/m³]
- M_{we} = MIMEC water use efficiency [USD/m³]
- S_{we} = Services water use efficiency [USD/m³]
- P_A = Proportion of water used by the agricultural sector over the total use
- P_M = Proportion of water used by the MIMEC sector over the total use
- P_s = Proportion of water used by the service sector over the total use

LIMITATIONS

- Water use efficiency strongly influenced by the economic structure of a country (weight of water intensive sectors): comparison of water efficiency across countries of limited value
- Also change in water use efficiency can be influenced by both 'real' improvements, as well as by changes in the economic structure
- Positive trend does not necessarily indicate a decline in total water use: needs to be combined with the water stress indicator (6.4.2)
- More disaggregated data at national level can help better interpreting trends: e.g. water efficiency for energy and for the municipal distribution network; in agriculture, disaggregation for livestock and aquaculture

DATA SOURCE AND DATA COLLECTION

- Country: Gross value added of each sector = National Accounts prepared by the NSO or the Central Bank
- Country: Volume of water used by each sector = Administrative sources of each relevant Line Ministry
- Global: Data on value added is compiled in UNSD's "The National Accounts Main Aggregates Database"
- Global: Data on water withdrawal are compiled for many countries in FAO's water database: AQUASTAT
- FAO (through AQUASTAT) calculates the indicator at national, regional and global level on behalf of UN-Water

		Food and Agriculture DEVELOPMENT
Country	Last date	6.4.1 (preliminary)
Afghanistan	2002	0.30
Bhutan	2007	3.19
India	2012	1.92
Iran	2007	3.77
Japan	2007	51.51
Lao PDR	2007	1.55
Malaysia	2007	16.85
Maldives	N/A	N/A
Mongolia	2012	13.86
Pakistan	2007	1.03
Papua New Guinea	2007	27.47
Republic of Korea	2002	26.23
Samoa	N/A	N/A
Thailand	2007	5.29
Turkmenistan	2007	0.40
Uzbekistan	2007	0.56

Kenya Indicator 6.4.1

IRRIGATED	AGRICU	LTURE WATER USE EFFICIEN	CY (Awe)	UNIT		CALCULATION RULES
Ratio	between i	rainfed and irrigated yields	[1]	0.375	decimals	Default Value used	0.375 default ratio used if no data entered
Propo	ortion of ir	rigated land on the total arable land (Ai)	[2]	0.019	decimals		=[3]/[4]
	Irrigated	land	[3]	193600		from Annual Progre	ss report 2016/17 for MTP II
	Arable la	nd	[4]	10261582		from NWMP 2030 V	OLUME - V SECTORAL REPORT (2/3)
Prop	oortion of rair	agricultural GVA produced by nfed agriculture (Cr)	[5]	0.951	decimals		=(1/(1+([2]/((1-[2])*[1])))))
Volur sei	ne of wate stor (inclu	er withdrawn by the agricultural ding irrigation, livestock and aquaculture)	[6]	3.234	km ³	From WRA	
Gros	s value a ver and m	dded by agriculture (excluding arine fisheries and forestry)	[7]	21,767,596,059	USD	from Kenya Econon	nic survey, 2017, KNBS
Irriga	ted Agric	ulture Water Use Efficiency	[8]	0.3283103	USD/m ³	=([7]*(1-[5]))/[6]	
MIMEC WA	TER USE	EFFICIENCY (Mwe)		Total	Unit		
				Total	onn		
Gro	ss value ; (added by the MIMEC sectors including energy)	[9]	6,482,266,010	USD	from Kenya Econon	nic survey, 2017, KNBS
Vol	ume of wa secto	ater withdrawn by the MIMEC ors (including energy)	[10]	0.303	km³	from WRA	
МІМЕ	C Water	Use Efficiency	[11]	21.421	USD/m ³		=[9]/[10]
SERVICES	NATER L	ISE EFFICIENCY (Swe)					
Gross	value ad	ded by services	[12]	29,301,349,754	USD		
Volum	ne of wate	r withdrawn by the services	[13]	0.495	km ³	WRA Data: Service	s allocation = Public+domestic +other uses categorie
Servi	ces Wate	r Use Efficiency	[14]	59.149	USD/m ³		=[12]/[13]
WATER US	EEFFICIE	ENCY (WUE)					
l agric	Proportion cultural se	of water withdrawn by the octor over the total withdrawals	[15]	0.802	decimals		=[6]/([6]+[10]+[13])
Prop	ortion of v sector o	vater withdrawn by the MIMEC ver the total withdrawals	[16]	0.075	decimals		=[10]/([6]+[10]+[13])
Prop	ortion of sector o	water withdrawn by the service wer the total withdrawals	[17]	0.123	decimals		=[13]/([6]+[10]+[13])
14/		alanau	[4.07	0 439	UCD/3		- (14 E18(01) - (14 E18(4 41) - (14 718(4 41)

CHARACTERISTICS OF THE AVAILABLE DATA

The figures are calculated by FAO based on the latest available data on the numerator and the denominator

They are preliminary data – FAO is working with countries to get updated data series and to validate the old time series for the next reporting

The data for Asia-Pacific countries is largely outdated
 the most recent figures are from 2012

The sticking point is the denominator: up-to-date water use data are lacking

SDG INDICATOR 6.4.2 LEVEL OF WATER STRESS: FRESHWATER WITHDRAWAL AS A PROPORTION OF AVAILABLE FRESHWATER RESOURCES

CONCEPT AND DEFINITION

- Concept: the purpose of this indicator is to assess the degree to which water resources are being used in a sustainable way to meet the country's water demand
- It provides an estimate of pressure by all major economic sectors on the country's renewable freshwater resources
- Definition: the ratio between total freshwater <u>abstracted</u> (or withdrawn) by all major sectors and total renewable freshwater resources, after having taken into account environmental water requirements

DEFINITION AND METHOD OF COMPUTATION

- The major sector may be defined as for Indicator 6.4.1 according to ISIC
- Builds on MDG indicator 7.5. <u>New aspect</u>: accounts for environmental water requirements
- Environmental water requirements are established in order to protect the basic environmental services of freshwater ecosystems. They are the minimum quantities of water required to sustain freshwater and estuarine ecosystems
- Methods of computation are extremely variable. FAO reccomends the use of International Water Management Institute's (CGIAR) Environmental Flow Calculator: <u>www.iwmi.cgiar.org/resources/models-and-</u> <u>software/environmental-flow-calculators/</u>

DEFINITION AND METHOD OF COMPUTATION

It is proposed to classify the level of water stress in three main categories (levels): low, high and very high

•Low stress: 0 – 25% (A low level of water stress indicates a situation where the combined withdrawal by all sectors is marginal in relation to the resources, and has therefore little potential impact on the sustainability of the resources or on the potential competition between users)

•High stress: 25 – 70% (A high level of water stress indicates a situation where the combined withdrawal by all sectors represents a substantial share of the total renewable freshwater resources, with potentially larger impacts on the sustainability of the resources and potential situations of conflicts and competition between users)

Very high stress: > 70%

DEFINITION AND METHOD OF COMPUTATION

Stress (%) = total freshwater withdrawn / (total renewable freshwater resources - environment) * 100

Numerator: Total freshwater withdrawn: The volume of freshwater extracted from its source: Rivers, Lakes and Aquifers

For agriculture, industries and municipalities

Includes surface freshwater, groundwater and fossil groundwater

✓ It does not include direct use of non-conventional water, i.e. treated wastewater, agricultural drainage water, and desalinated water

DEFINITION AND METHOD OF COMPUTATION

Stress (%) = total freshwater withdrawn / (total renewable freshwater resources - environment) * 100

Denominator: total renewable freshwater resources: The sum of internal and external renewable water resources

Internal renewable water resources = average annual flow of rivers and recharge of groundwater generated from endogenous precipitations for a given country

External renewable water resources = flow of water entering the country, taking into consideration the flow reserved to upstream and downstream countries through agreements or treaties

INDICATOR LIMITATIONS

- Difficulty to obtain accurate, complete and up-to-date data
- The indicator does not account for seasonal variations in water resources
- The indicator does not capture water stress variations at sub-national level, which can potentially be significant

INDICATOR LIMITATIONS

The indicator can be higher than 100% when water withdrawal includes:

- secondary freshwater (water withdrawn previously and returned to the system)
- non-renewable water (fossil groundwater)
- when annual groundwater withdrawal is higher than annual replenishment (over-abstraction)
- when water withdrawal includes part or all of the water set aside for environmental water requirements.

DATA COLLECTION (PAST)

- Usually, three-five years are a minimum frequency to be able to detect significant changes
- •Few countries actually publish water use data on a regular basis by sector
- •FAO compiles data and calculates this indicator at the international level
- Data is collected through AQUASTAT country surveys since 1994 through official counterpart at country level

Kenya Indicator 6.4.2

WATER STRESS			UNIT		CALCULATION RULES	
Total freshwater withdrawn (surface + groundwat	er) [1]	4.032	in km³		=[2]-[3]-[4]-[5]	
Total water withdrawal	[2]	4.032	in km³	OK	services + agriculture + industries	
Desalinated water produced	[3]	0.000	in km ³			
Direct use of treated municipal wastewater	[4]	0.000	in km³			
Direct use of agricultural drainage water	[5]	0.000	in km³			
Total renewable freshwater resources	[6]	23.960	in km³			
Environmental flow requirements	[7]	16.8	in %	Source:		
Environmental flow requirements (volume)		4.025	in km³	NWMP 203	WMP 2030 Sectoral Report (G). Surface Water flow value at Q95	
Water Stress	[8]	20.2	%		=[1]/([6]-([6]*[7]/100))	

6.4.2 LEVEL OF WATER STRESS (2014)

DATA COLLECTION (NEW)

- On 4 May 2018, FAO sent a letter to all countries requesting the appointment of a National Focal Point who will be responsible for completing FAO's "Water and Agriculture" Questionnaire.
- At the same time, request for:
 - Updated data on 2015-17
 - Validation of data 2000-2014
- Data collected through this questionnaire aim to provide a comprehensive picture of water resources and uses at the national and sub-national level
- These data will be critical in calculating SDG indicators 6.4.1 and 6.4.2

Country	Nominated focal point?	Returned questionnaire?
Afghanistan	Yes	NO
Bhutan	NO	NO
India	NO	NO
Iran	NO	NO
Japan	NO	NO
Lao PDR	Yes	Yes
Malaysia	Yes	Yes
Maldives	Yes	NO
Mongolia	Yes	NO
Pakistan	Yes	Yes
Papua New Guinea	NO	NO
Republic of Korea	NO	NO
Samoa	NO	NO
Thailand	Yes	Yes
Turkmenistan	NO	NO
Uzbekistan	Yes	Yes

	Food and Agriculture Organization of the United Nations GOALS						
Country	National Focal point for 6.4.1/6.4.2						
Afghanistan	 Mr Esmatullah Hakimi, Head of Economic Statistic Department, Central Statistics Organization of Afghanistan Mr Mohammad Qasim Kabari 						
Bhutan							
India							
Iran							
Japan							
Lao PDR	Mr Saengdavanh INTHAVONGMr Phayseng PHOMPHAKDY						
Malaysia	 a Ms Zaitun Mohd Taha, StatsMalaysia Mr Ismail Abdul Rahman 						
Maldives	 Mr Mohamed Musthafa, Director General, Ministry of Environment and Energy Mr Afsal Hussain, Director, Ministry of Environment and Energy 						

	Food and Agriculture Organization of the United Rations SUSTAINABLE DEVELOPMENT GOALS					
Country	National Focal point for 6.4.1/6.4.2					
Mongolia	Oyunjargal MANGALSUREN, Senior Statistician of Economic Statistics Department, National Statistics Office of Mongolia					
Pakistan	 Mr.Fazil Mahmood Baig, Director (National Account), Pakistan Bureau of Statistics Mr Waqar Aslam, Chief Statistical Officer (agriculture), PBS 					
Papua New Guinea						
Republic of						
Korea						
Samoa						
Thailand	 Chalermkiat Khongwichianwat, Deputy Director General for Engineering, Royal Irrigation Department Mr. Sanya Saengpumpong, Director of Water Management and Hydrology Bureau, Royal Irrigation Department 					
Turkmenistan						
Uzbekistan	 Mr. Z.Ishpulatov, Head of Sector, Ministry of Water Resources of the Republic of Uzbekistan Ms N.Dekhkanova, Leading specialist, The state Committee of the republic of Uzbekistan of Statistics 					

Country	Latest Date	SDG indicator 6.4.2 – level of water stress- 2014 (%)
Afghanistan	2000	43.67
Bhutan	2008	0.56
India	2010	44.53
Iran	2004	89.99
Japan	2009	28.45
Lao PDR	2005	1.39
Malaysia	2005	3.41
Maldives	2008	15.66
Mongolia	2009	2.42
Pakistan	2008	102.50
Papua New Guinea	2005	0.09
Republic of Korea	2005	57.58
Samoa	N/A	N/A
Thailand	2007	17.48
Turkmenistan	2004	162.83
Uzbekistan	2005	138.82

AQUASTAT

The world's most comprehensive database on water

Compiled water use data needed for SDG indicators6.4.1 and 6.4.2, but many other data as well

 Country profiles available including multiple water use variables

<u>http://www.fao.org/nr/water/aquastat/main/index.s</u>
<u>tm</u>

HOW IS FAO SUPPORTING COUNTRIES

An e-learning course on 6.4.2 is already available, whereas an e-learning course on 6.4.1 is currently being finalized

 In 2017, FAO organized three workshops in Rome, Guatemala and Casablanca on SDG indicators 6.4.1 and 6.4.2.

 In 2018, FAO organized or supported workshops in China, Mexico, Uruguay, Cote d'Ivoire, Ecuador and Azerbaijan

•Further direct technical assistance can be provided upon request.

THANK YOU

DorianKalamvrezos.Navarro@fao.org

For more detailed information please see:

<u>http://www.fao.org/sustainable-development-goals/indicators/641/en/</u>

http://www.fao.org/sustainable-development-goals/indicators/642/en/