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Estimation of Parameters 

Survey Objectives: 
 Are usually met by producing estimates of 

parameters of survey variable(s) 
– (Population) Mean 
– (Population) Total 
– (Population) Proportion 
– (Population) Ratio, Regression, correlation 

 Which estimates are produced depends on the 
objectives of the survey 
– Your examples 
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Two aspects of sampling theory 

 Sample selection through Sampling Design 
 Estimation of Parameters and their Properties 

– Efficiency:  provide estimates at lowest cost and 
reasonable enough precision 

– Sampling distribution: precision of estimators are 
judged by the frequency distribution generated for 
the estimate if the sampling procedure is applied 
repeatedly to the same population  
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Estimator is… 
 a function (formula) of observations by which 

an estimate of some population characteristic 
(parameter), say, population mean is calculated 
from the sample 

 a random variable and is defined on a random 
sample.  Each random sample will yield one of 
its possible values 

Estimation of Parameters 
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SRS- Providing Estimator 

Estimator of Population Mean,         is  

Where:  yi = sample response for variable y, unit i;  n is sample size 
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Where, N = population size  
w = base (sampling) weight for each sample unit or inflation 
factor 
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Sampling Distributions of Estimators 

 To obtain the sampling distributions of estimators, 
the following probability sampling mechanism is 
considered: 
– It is possible to define the set of distinct 

samples which the sampling procedure is 
capable of selecting from the population 

– This further implies that it is possible to identify 
units belonging to different samples 

iπ
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Sampling Distribution of Estimators (Contd.) 

 Each of the possible samples is assigned a 
known probability of selection 
– Out of all possible samples, a sample, 

selected by a random process determined by 
the probability of selection 

 Method of computing estimate from the 
sample (estimator) is pre-specified 
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Example 

 Population of N=6 households 
 Survey variable (y) = household 

size 
 Variance of y = 1.667 & S2 = 2 
 Population mean = 5 persons 
 Population total = 30 persons 
 Proportion of HHs with 6 or 

more members = 0.33 

HH ID HH Size (y)
a 5
b 7
c 6
d 4
e 5
f 3

Table 1:Population of 6 units  



Table 2. Possible SRSWOR Samples of n=2 
Sample No. Sample Units y1 y2

1 a,b 5 7
2 a,c 5 6
3 a,d 5 4
4 a,e 5 5
5 a,f 5 3
6 b,c 7 6
7 b,d 7 4
8 b,e 7 5
9 b,f 7 3
10 c,d 6 4
11 c,e 6 5
12 c,f 6 3
13 d,e 4 5
14 d,f 4 3
15 e,f 5 3



10 

Show the sampling distribution of ... 

 sample mean 
 sample proportion 
 estimator of population total 
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Table 3.  Estimates from Samples 
Sample No. y1 y2

Sample 
Mean

Sample 
Proportion

Sample 
Total

Sampling 
weight

Estimate of 
Population Total

1 5 7 6.0 0.5 12 3 36
2 5 6 5.5 0.5 11 3 33
3 5 4 4.5 0.0 9 3 27
4 5 5 5.0 0.0 10 3 30
5 5 3 4.0 0.0 8 3 24
6 7 6 6.5 1.0 13 3 39
7 7 4 5.5 0.5 11 3 33
8 7 5 6.0 0.5 12 3 36
9 7 3 5.0 0.5 10 3 30
10 6 4 5.0 0.5 10 3 30
11 6 5 5.5 0.5 11 3 33
12 6 3 4.5 0.5 9 3 27
13 4 5 4.5 0.0 9 3 27
14 4 3 3.5 0.0 7 3 21
15 5 3 4.0 0.0 8 3 24



12 

Sampling Distribution of  

Example, Table 3, 

y

Table 4. Sampling distribution of y
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Probability Sampling 

 To calculate the frequency distribution of the 
estimator, following probability sampling 
mechanism is considered: 

 It is possible to define the set of distinct samples , 
S1, S2,...,Sv (all possible samples) which the 
sampling procedure is capable of selecting from 
the population. This further implies that it is 
possible to identify units belonging to different 
samples 
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Probability Sampling (Contd.) 

 Each of the possible sample Si is assigned a 
known probability of selection , say,  Pi   

 Out of the all possible samples, a sample , Si, is 
selected by a random process whereby  each 
sample Si has a probability of being selected 

 The method of computing estimate from the 
sample is pre specified 
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Probability Sampling (Contd.) 

 Process of generating all possible samples is 
laborious, particularly for large populations, thus 

 Procedure usually followed is 
– Specify inclusion probability of all the units of the 

population 
– Select units one by one by predetermined 

probabilities until sample of desired size n is 
selected (Random Sample)  

 The availability of sampling frame is a pre- requisite 



Properties of Estimators 

 Unbiasedness 
 Precision 
 Accuracy 

 Consistency 
 Sufficiency 
 Efficiency 
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Basic Ideas: Unbiased Estimator 

 An estimator      is an unbiased estimator for 
the parameter θ if the mean of its sampling 
distribution is equal to θ. 

 Bias of an estimator 

θ̂

( ) ( )ˆ ˆθ 0E Eθ = ⇒ θ −θ =

( )ˆ(θ) θ̂ θEBias = −
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Unbiased Estimators 
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Biased Estimators 
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Properties of Sample Mean: 
Illustration Sample No. y1 y2

Sample 
Mean

e=Sampling Error 
=Sample mean - 5 e2

1 5 7 6.0 1.0 1.00
2 5 6 5.5 0.5 0.25
3 5 4 4.5 -0.5 0.25
4 5 5 5.0 0.0 0.00
5 5 3 4.0 -1.0 1.00
6 7 6 6.5 1.5 2.25
7 7 4 5.5 0.5 0.25
8 7 5 6.0 1.0 1.00
9 7 3 5.0 0.0 0.00
10 6 4 5.0 0.0 0.00
11 6 5 5.5 0.5 0.25
12 6 3 4.5 -0.5 0.25
13 4 5 4.5 -0.5 0.25
14 4 3 3.5 -1.5 2.25
15 5 3 4.0 -1.0 1.00

Mean of sample mean 5.0 Mean of e2 0.667
Standard error 0.667
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Sampling design SRSWR  or SRSWOR 

 Population parameter              

 Sample mean                      is an unbiased estimator 

of population mean 
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Example 1- Design-based Estimator 
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 Sampling design Stratified SRSWOR 

 Population mean 

 Sample mean 

                                                     is an unbiased estimator of population mean  

     (Assuming there are ‘H’ strata,  h-th strata of size Nh and a sample of 

size nh drawn from the h-th strata by SRSWOR) 

Example 2- Design-based Estimator 
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Example 3- Ratio Estimator 

Sampling design SRSWOR 

 Population parameter 

 

 Estimator                                  (ratio estimator) is a biased estimator  

                  

 Bias of the ratio estimator is 
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Sampling Error 

 Sampling error of       is the difference between the 
estimate and the parameter it is estimating 

θθ̂e −=

θ̂
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Variance of Unbiased Estimator 

 Variance of unbiased estimator θ̂

( )2ˆ ˆvar(θ) θ θE  = −  

‘Average’ of squared deviations of all possible estimates 

θθ̂e −=
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Variance of Estimator, General 

 Variance of estimator 

ˆ ˆθ (θ)E−

θ̂

( )( )2ˆ ˆ ˆvar(θ) θ θE E = −  

‘Average’ of squared deviations of estimates from their mean 
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Precise Estimators 
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 Variance is small of precise estimator 
 Smaller the variance, more precise the estimator 
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Accurate Estimator 

 Which estimator is the most accurate? 
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An estimator is said to be accurate if  
  both bias and variance are small 
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Mean Squared Error (MSE) 

 Total error (simple model) =  
( ) ( ) θ]θ̂E[]θ̂Eθ̂[θθ̂ −+−=−

22 })ˆ(E{)]}ˆ(Eˆ{[E θ−θ+θ−θ=
Variable error  Bias2  

2)θ̂Bias()θ̂Var()θ̂MSE( +=

 Measure of accuracy is Mean Squared Error 
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Example: Ratio Estimator in SRSWOR 

 Population parameter 

 Estimator 

 Bias of the ratio estimator is 

 MSE of the ratio estimator is  
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Efficiency 

 Given two estimators  of the population 
parameter, one estimator is said to be more 
efficient than the other if its mean square error 
is less than that of the other 
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 Measure of efficiency =             
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Consistency 

 An estimator  is said to be a consistent estimator if its value 

approaches parameter,  statistically 

 the probability of the difference                being less than 

any specified small quantity tends to unity as n is increased 

 Also, when n is increased  to ‘N’ the estimator  attains the 

value of the parameter 

µµ −ˆ
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 Sampling design SRSWR 

 Population parameter                  

 Sample mean                   is a consistent estimator of 

the population mean 
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 Sampling design SRSWOR 

 Population parameter 

 Sample mean                         is a consistent 

estimator of  the population mean 
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 Sampling design SRSWOR 

  Population parameter 

                    Ratio estimator is a consistent 

estimator of population mean 
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Confidence interval 

 Large sample sizes 
 Sampling distribution of estimates is normally 

distributed 
 It is possible to construct a confidence interval 

for the parameter of interest 
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 Sampling design SRSWR 

 Population parameter             

 Sample mean              

 5% CI               

 1%  CI        
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Sufficiency 

 Non Completeness of sample mean  
 Non existence of UMVUE (Uni Min Var Unbiased Estimator) 

 Involvement of main stream statisticians to the 
problem of finite population sampling 

 Frame work for finite population inference 
 Admissibility and hyper admissibility 
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Other approaches 

 Likelihood function approach 
 Model based approach 
 Robustness aspect 
 Model assisted approach 
 Use of models but inferences are design based 
 Conditional design based approach 



Estimation of Variance  

Variance Estimation in Complex Surveys 
– Linearization (Taylor’s series) 
– Random Group Methods 
– Balanced Repeated Replication (BRR) 
– Re-sampling techniques 

• Jackknife, Bootstrap 
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Taylor’s Series Linearization Method 

 Non-linear statistics are approximated to linear 
form using Taylor’s series expansion 

 
 Variance of the first-order or linear part of the 

Taylor series expansion retained 
 
 This method requires the assumption that all 

higher-order terms are of negligible size 
  
 We are already familiar with this approach in a 

simple form in case of ratio estimator 
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Random Group Methods 

 Concept of replicating the survey design 
 Interpenetrating samples 
 Survey can also be divided into R groups so that each 

group forms a miniature version of the survey 
 Based on each of the R groups estimates can be 

developed for the parameter       of interest 
 Let      be the estimate based on rth sample  
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BRR method  

 Consider that there are H strata with two units 
selected per stratum 

  There are         ways to pick 1  from each stratum 
  Each combination could be treated as a sample  
 Pick R samples 
 Which samples should we include?  

H2
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BRR method (Contd.) 

 Assign each value either 1 or –1 within the 
stratum 

 Select samples that are orthogonal to one 
another to create balance 

 One can use the design matrix for a fraction 
factorial 

 Specify a vector of 1, -1 values for each stratum 
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BRR method (Contd.) 

 An estimator of variance based on BRR method 
is given by 
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Jack-knife Method 

 Let        be the estimator of θ after omitting the 
ith  observation. Define  
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Soft-wares for Variance estimation 

 OSIRIS – BRR, Jackknife 
 SAS – Linearization 
 STATA – Linearization 
 SUDAAN – Linearization, Bootstrap, Jackknife 
 WesVar – BRR, Jackknife, Bootstrap 
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