MODULE 6: SAMPLING METHODS FOR THE FISHERIES AND AQUACULTURE SURVEYS

SESSION 6.2:
SAMPLING DESIGNS FOR FISHERIES AND AQUACULTURE SURVEYS

Regional Training Course on Sampling Methods for Producing Core Data Items for Agricultural and Rural Statistics

Jakarta, Indonesia ,29Sep-10 October 2014.

SAMPLING: FISHERIES \& AQUACULTURE

Given same budget, what makes sampling designs so different?

Discussed

Statistical units

Frame

Variation in the population
stratification

SAMPLING: FISHERIES \& AQUACULTURE

Statistical units:
What should be selected? Sampling unit (s)
What should be observed? Observational unit(s)
$>$ Fish from a catch?
$>$ Vessels landing their catch at the port?
\Rightarrow Fishers?
>....

SAMPLING: FISHERIES \& AQUACULTURE

Constructing a sampling frame

$>$ Depends on infrastructure and information available on it
$>$ Define target area (water bodies included)
$>$ Primary fishery units (ports, landing sites, fishing fleets, fishers, markets \& transportation routs)

SAMPLING: FISHERIES \& AQUACULTURE

Often

$>A$ "frame survey" is required
$>$ Information is available from scattered sources (including registers)

SAMPLING: FISHERIES \& AQUACULTURE

How to stratify the population?

Purpose: to reduce the variability

Pre-defined

 (Major)province, month, season, ..

Fishing
grounds, size of fisheries, ..

SAMPLING: FISHERIES \& AQUACULTURE

Examples of stratification criteria:

Spatial	Vessel/gear
Time	Landings
Enterprises	Households
Trade	Environment

SAMPLING: FISHERIES \& AQUACULTURE

How do you balance? (examples)

Combine gears (two sizes of nets)
Reduction of sampling effort Stratify in time
Stratify in space
Generate a size variable

SAMPLING: FISHERIES \& AQUACULTURE

How to generate a size variable?

$>$ Size is a composite value of multiple variables
Example:

fishing			type1 Sites
units	gear	gear	
gear			

1- normalize each variable
2-calculat total of normalized vars
3-size of site is its percentage from grand total
4-stratify based on the size
value (by using cumulative size)

SAMPLING: FISHERIES \& AQUACULTURE

Sampling design (example of marine fishery)

Strata : Month-Zone

Country

SAMPLING: FISHERIES \& AQUACULTURE

Sampling design (example of marine fishery)

$>$ Large zones may be self-representative (strata=month)
$>$ Number of PSUs (sites-day) in each stratum= \#of sites $\times 30$

SAMPLING: FISHERIES \& AQUACULTURE

Selection procedure (Stage1)

$>$ Each month may be segmented into 3 or 6 parts for data collection purposes and samples taken systematically from each segment (say 16 days)
$>$ In each zone, select a sample of sites and allot to the selected days
> Better to allot each selected site two consecutive days and in each day collect data in different time periods (day and night landings)

SAMPLING: FISHERIES \& AQUACULTURE Selection procedure (Stage2)

$>$ In each selected site, select a sample of boats/crafts
$>$ Decide a threshold for total enumerations, for instance:

Number of units landed	Sampling rate
less than or equal to 15	100%
16 to 19 landed	first 10 and the balance 50%
20 to 29 landed	50%
30 to 39 landed	1 in 3
40 or more landed	1 in 4

SAMPLING: FISHERIES \& AQUACULTURE aquaculture survey design

> Objective: to generate statistics on volume and value of aquaculture production
> Sampling units: Aquafarms
$>$ Sampling frame: list of aquafarms from the relevant authority of created prior to the survey
> Coverage: Normally define a cut-off of total production/area

SAMPLING: FISHERIES \& AQUACULTURE aquaculture survey design

> Design: Normally one-stage stratified sampling
$>$ Stratification: Aquafarm type-Area
$>$ Self representative strata: define a threshold like up to 15 aquafarm
> Selection: Sample aquafarms shall be selected through systematic random sampling

