

ADVANCING STATISTICS FOR DEVELOPMENT

Water Account

System of Environmental-Economic Accounting Central Framework (SEEA-CF)

Teerapong Praphotjanaporn Statistics Division, ESCAP 14-16 September 2016

* Adapted from the presentation prepared for the project entitled "Advancing the SEEA Experimental Ecosystem Accounting".

Overview: Water Account

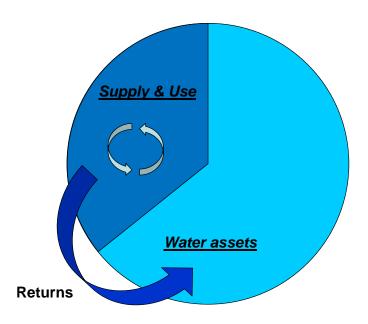
- 1. Learning objectives
- 2. Review of Level 0 (5m)
- 3. Level 1 (Compilers)
 - Concepts (15m)
 - Group exercise & Discussion (30m)
- 4. Level 2 (Data providers)
 - Data options, examples & issues (15m)
 - Group exercise & Discussion (15m)
- 5. Closing Discussion (10m)

Learning objectives: Levels 1 and 2

Level 1:

- Understand why Water Accounts are important and how they link to policy
- Understand the basic concepts of Water Accounting
- Understand how water is treated in the SEEA
- · Learn the steps of compiling a Water Account

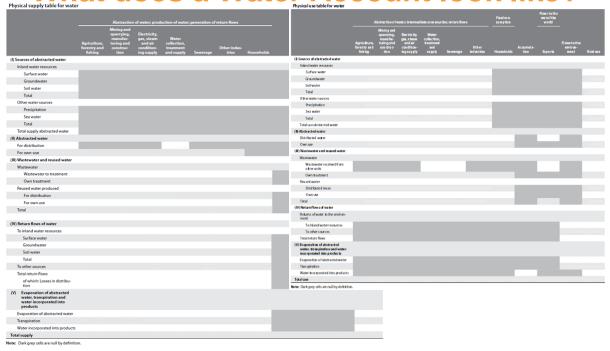
Level 2:


- Understand the data options and sources
- Understand the important conceptual issues
- Be aware of how other countries have approached Water Accounting

Water Account

- 1. Learning objectives
- 2. Review of Level 0 (5m)
- 3. Level 1 (Compilers)
 - Concepts (15m)
 - Group exercise & Discussion (30m)
- 4. Level 2 (Data providers)
 - Data options, examples & issues (15m)
 - Group exercise & Discussion (15m)
- 5. Closing Discussion (10m)

Water account - SEEA CF


What?

- Availability (stocks) and changes (flows) of water resources
- · Supply and use of water within the economy

Why?

- Policies on water security, water resources management
- Links to economic accounts
- Basis for SEEA-WATER, SEEA-EEA
- Indicators:
 - Total water use (by source, purpose, etc.)
 - · Water intensity/productivity
 - Variability in water resources, trends (droughts, floods)

What does a Water Account look like?

What do you need to compile a Water Account?

· Data:

- · Water stocks by source
- Supply (abstraction, production, return flows)
- Use (abstraction, intermediate consumption, return flows);

Expertise:

- Statisticians
- Hydrologists
- Water industry specialists

Examples of water-related SDG indicators

- 6.1.1: Proportion of population using safely managed drinking water services
- 6.3.1: Percentage of wastewater safely treated
- 6.4.1: Percentage change in water use efficiency over time
- **6.4.2:** Level of water stress: freshwater withdrawal as a proportion of available freshwater resources

Water account - SEEA CF

Water Account

- 1. Learning objectives
- 2. Review of Level 0 (5m)
- 3. Level 1 (Compilers)
 - Concepts (15m)
 - Group exercise & Discussion (30m)
- 4. Level 2 (Data providers)
 - Data options, examples & issues (15m)
 - Group exercise & Discussion (15m)
- 5. Closing Discussion (10m)

Learning objectives

Level 1:

- Understand why Water Accounts are important and how they link to policy
- · Understand the basic concepts of Water Accounting
- Understand how water is treated in the SEEA
- · Learn the steps of compiling a Water Account

Water account - SEEA CF

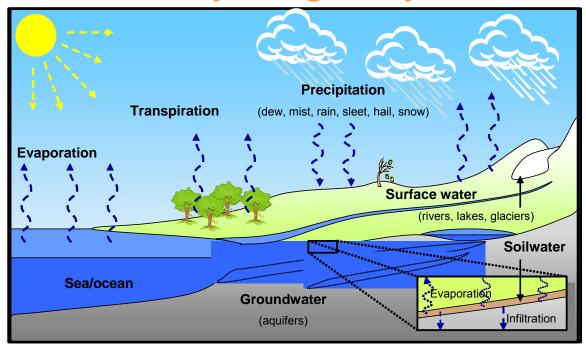
Accounts and data

"Lack of *integrated* water data is a systematic impediment to informed decision making related to the sustainable use of water resources. Data are needed to provide information not just about water quantity, both on the surface and underground, but also about its *quality*, *social* and *economic* relations as well as environmental dimensions."

Conclusion from Session 6.4 "Data for All" of the 5th World Water Forum

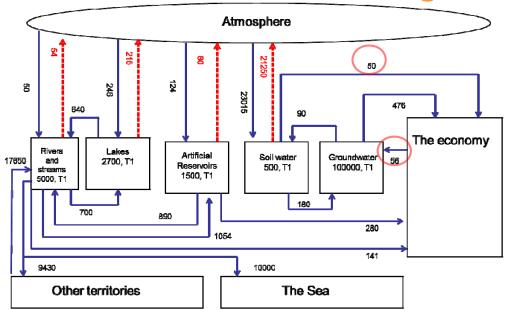
<u>Accounts</u> provide a framework for arranging data. They enable data from different sources to be integrated. They also enable gaps and deficiencies in primary data sources to be identified and addressed.

* http://unstats.un.org/unsd/envaccounting/WWAP_UNSD_WaterMF.pdf

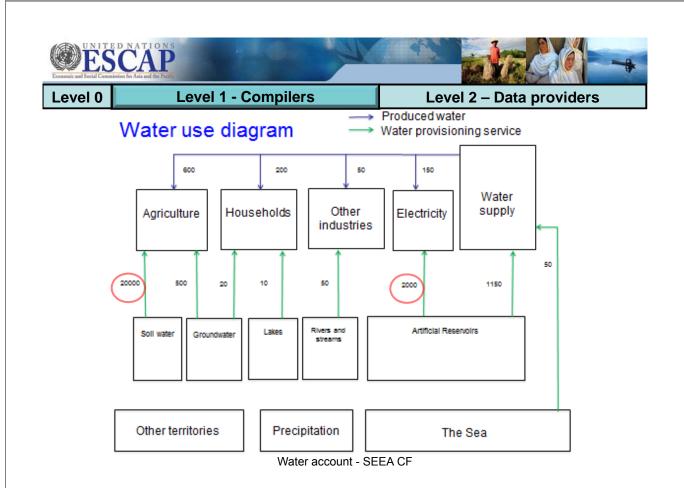


Concepts

- The hydrological cycle
- · Stocks, supply, abstraction and use



The Hydrological Cycle


Water stocks and flows diagram

Water asset account (from diagram)

	Type of water resourcs									
	Surface water									
	Artificial		Rivers and	Glaciers,						
	reservoirs	Lakes	streams	snow and ice	Goundwater	Soil water	Total			
(A) Opening stock	1,500	2,700	5,000	-	100,000	500	109,700			
Additions to stock										
(B) Returns (from Economy)	-	-	-	-	56) -	56			
(C) Precipitation	124	246	50	-		23,015	23,435			
(D) Inflows from other territories	-	-	17,650	-	-		17,650			
(E) Inflows from other inland water	1,054	700	640	-	180	90	2,664			
(F) Discoveries of water in aquifers					-		-			
(G) Total additions to stock	1,178	946	18,340	-	236	23,105	43,805			
Reductions in stock										
(H) Abstraction (to Economy)	280		141	-	476	50	947			
(I) Evaporation and evapotranspiration	80	215	54	-		21,250	21,599			
(J) Outflows to other territories			9,430	-	-		9,430			
(K) Outflows to the sea			10,000	-	-		10,000			
(L) Outflows to other inland water	890	640	1,754	-	90	180	3,554			
(M) Total reductions in stock	1,250	8 55	21,379	-	566	21,480	45,530			
Closing stock	1,428		1,961		99,670	2,125	107,975			

Water account - SEEA CF

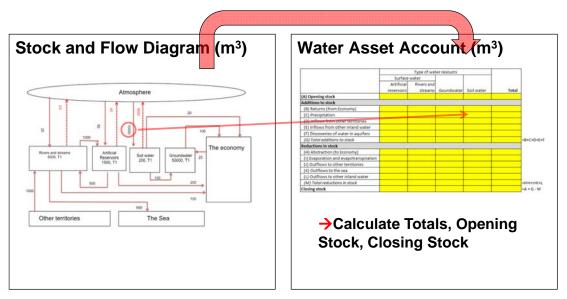
Physical Water Use Table (from Diagram)

	Use of water					
		Electricity,	Water			
	Agriculture,	gas, steam	collection,			
	forestry and	and air	treatment	Other		
	fishing	conditioning	and supply	industries	Households	Total use
Sources of abstracted water						
Inland water resources						
Surface water	-	2,000	1,150	50	10	3,210
Groundwater	500		-	-	20	520
Soil water	20,000	-	-	-	-	20,000
Sea water		-	50	-	-	50
Total abstracted water	20,500	2,000	1,200	50	30	23,780
Abstracted water						
Distributed water (to other econmic units)	-	-	1,000	-	-	
Use of water (from other economic units)	600	150	-	50	200	1,000
Own use	20,500	2,000	200	50	30	22,780
Total use of water (abstracted and distributed water)	21,100	2,150	200	100	230	23,780

Water account - SEEA CF

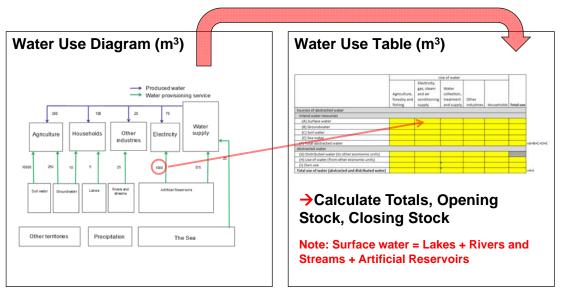
Compilation Group Exercise (30m)

Situation:

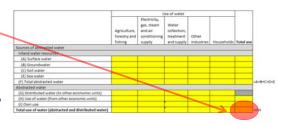

- 1. Have a simplified Stock and Flow Diagram
- 2. Have a simplified Water Use Diagram

Objective (Groups of 3-5):

- 1. Compile a Water Asset Account
- 2. Compile a Water Use Table
- 3. Report results


Group Exercise: Exercise 1 – Water Asset Account

Water account - SEEA CF


Group Exercise: Exercise 2 – Water Use Table

Water account - SEEA CF

- Is everyone clear on the objectives?
- 30 minutes group work
- Please ask questions!
- · Results:
 - Each group report:
 - 1. Opening and closing stock
 - 2. Total use of water
 - Bonus questions:
 - 1. What was the largest source of reductions in stock?
 - 2. What is the main use of water?

Water account - SEEA CF

The answers

Water Asset Account

Opening Stock = 56,700 m³

Closing Stock = 57,410 m³

Largest source of reductions = Evaporation from Soil water

	Surface	water			
	Artificial	Rivers and			
	reservoirs	streams	Goundwater	Soil water	Total
(A) Opening stock	1,500	5,000	50,000	200	56,700
Additions to stock					
(B) Returns (from Economy)	-	-	20	-	20
(C) Precipitation	50	20		10,000	10,070
(D) Inflows from other territories	-	1,000	-	-	1,000
(E) Inflows from other inland water	1,000	500	100	-	1,600
(F) Discoveries of water in aquifers	-	-	-	-	-
(G) Total additions to stock	1,050	1,520	120	10,000	12,690
Reductions in stock					
(H) Abstraction (to Economy)	200	100	100	20	420
(I) Evaporation and evapotranspiration	40	20	-	9,000	9,060
(J) Outflows to other territories	-	-	-	-	<i>-</i>
(K) Outflows to the sea	-	900	-		900
(L) Outflows to other inland water	500	1,000	-	100	1,600
(M) Total reductions in stock	740	2,020	100	9,120	11,980
Closing stock	1,810	4,500	50,020	1,080	57,410

The answers

Water Use Table

Total use of water = 11,890 m³

The main use of water is Soil Water for Agriculture, Forestry and Fishing

	Use of water					
		Electricity,				
		gas, steam	Water			
	Agriculture,	and air	collection,			
	forestry and	conditioning	treatment	Other		
	fishing	supply	and supply	industries	Households	Total use
Sources of abstracted water						
Inland water resources						
(A) Surface water	-	1,000	575	25	5	1,605
(B) Groundwater	250	-	-	-	10	260
(C) Soil water	10,000	-	-	-	-	10,000
(E) Sea water	-	-	25	-	-	25
(F) Total abstracted water	10,250	1,000	600	25	15	11,890
Abstracted water						
(G) Distributed water (to other ecomomic units)			500			
(H) Use of water (from other economic units)	300	75	-	25	100	500
(I) Own use	10,250	1,000	100	25	15	11,390
Total use of water (abstracted and distributed water)	10,550	1.075	100	50	115	11,890

Water account - SEEA CF

Water Account

- 1. Learning objectives
- 2. Review of Level 0 (5m)
- 3. Level 1 (Compilers)
 - Concepts (15m)
 - Group exercise & Discussion (30m)
- 4. Level 2 (Data providers)
 - Data options, examples & issues (15m)
 - Group exercise & Discussion (15m)
- 5. Closing Discussion (10m)

Learning objectives

Level 2:

- Understand the data options, sources and methods used
- Understand the important conceptual issues
- Be aware of how other countries have approached Water Accounting

Water account - SEEA CF

Data options

- Types of water data
 - Stock
 - Supply
 - Use
- Sources of national and global water data

Data options

Data sources by type:

- Survey data (e.g. agricultural survey)
- Administrative data (e.g., water consumption)
- Hydrological/meteorological data (e.g., rainfall)
- Research data (e.g., case studies)

Water account - SEEA CF

Data options

Data sources by agency:

- Government agencies responsible for:
 - Water, meteorology, hydrology, statistics, agriculture, environment, energy (especially hydropower), planning, finance, geology
 - National, state/provincial or local government
- Water suppliers and wastewater treatment
- Water research organisations(e.g. government agencies, universities)
- Non-government organisations
 (e.g. water industry associations, farmer associations, conservation groups, etc.)

Data options

Global data sources

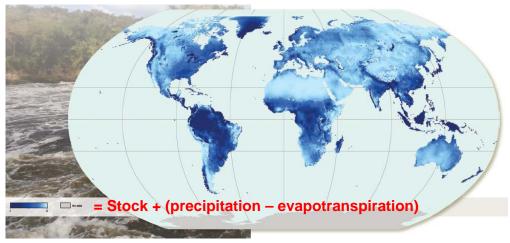
- Data on water and land cover are available from international agencies or research organisations:
 - FAO Aquastat http://www.fao.org/nr/water/aquastat/main/index.stm
 - WHO World Climate Data and Monitoring Program (WCDMP) http://www.wmo.int/pages/prog/wcp/wcdmp/index en.php
 - WMO World Hydrological Cycle Observing System (WHYCOS) http://www.whycos.org/whycos/

Water account - SEEA CF

Guidelines on methods

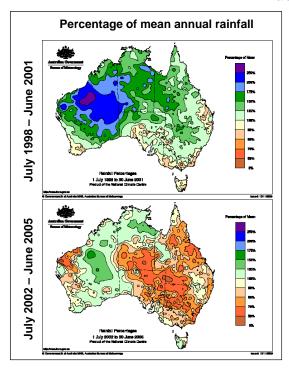
- International Recommendations for Water Statistics (IRWS)
- Guide to Meteorological Instruments and Methods of Observation
- Guidelines on the Role, Operation and Management of National Hydrological Services
- International Benchmarking Network for Water and Sanitation Utilities
- A System of Integrated Agricultural Censuses and Surveys
- ISO (e.g. ISO 19115 for geographic information)
- Statistical Data and Metadata Exchange (or SDMX)
- World Meteorological Organisation Core Metadata Standard
- Infrastructure for Spatial Information in the European Community (INSPIRE)
- Global Annual Assessment of Sanitation and Drinking Water
- MDG reporting standards (for water supply and sanitation)

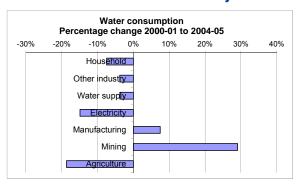
Common problems in compilation of water accounts

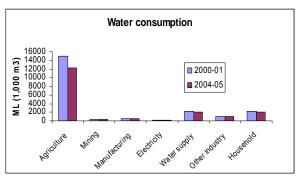

- Classification of units to industry especially those engaged in multiple activities (e.g. water supply, sewerage and hydro-electricity generation)
- In most countries national accounts do not separate the water supply and sewerage industries
- Recording of losses in distribution and the flows for use of water in hydroelectricity and water for cooling
- Boundary between **environment and the economy**, especially artificial reservoirs
- Spatial referencing economic data refers to administrative boundaries while hydrological data refers to river basins
- Confidentiality of business data
- Data quality
- Scale of data (national level data may hide regional variation)
- Seasonality: Annual averages may hide seasonal variation and extremes (e.g., floods and droughts)
 Water account SEEA CF

Some Global and country examples

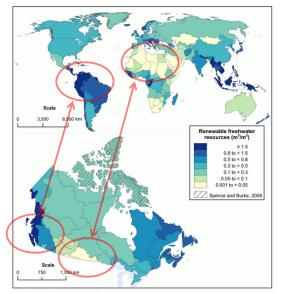
- UNEP-WCMC: Composite map of global ecosystem assets (Freshwater component)
- Australia: Water Accounts
- Canada: Freshwater Supply and Demand
- Samoa: Water Accounts

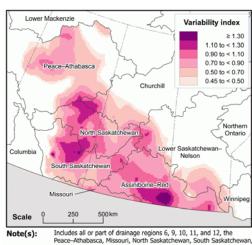

UNEP-WCMC: Composite map of global freshwater resources



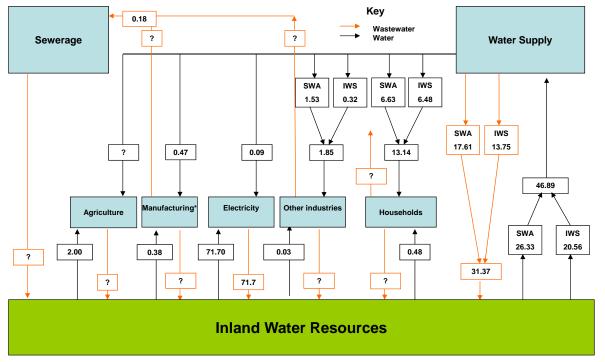

Source: Dickson, Blaney et al. (2014)

Australia's water accounts are not just tables





Canada's Freshwater Supply and Demand


Includes all or part of drainage regions 6, 9, 10, 11, and 12, the Peace-Athabasca, Missouri, North Saskatchewan, South Saskatch and Assiniboine-Red.

Sources(s): Statistics Canada, Environment Accounts and Statistics Division, 2010, special tabulation.

Source: Statistics Canada, 2010

Experimental water accounts for Samoa, 2013-14 (Millions m3)

*Draft Experimental Water Accounts for Samoa, 2011-12 to 2013-14, version 1.2 (29 September 2015)

Group exercise (15m) (Groups of 3-5)

- 1. What is the main water issue in your country?
- 2. Suggest three measures that could be used to address it?
- 3. Report:
 - The water issue you selected
 - The three measures you selected
 - Are **national** data available in your country for these measures?
- 4. Discussion:
 - What other measures could you suggest?
 - What other data sources could you suggest?

A lot of progress can be made quickly...

- It is not necessary to compile complete water accounts
 - Address national policy priorities with available data
- National data, global data and guidance are available to get started
 - Many countries already have much of the data needed to compile water supply and use tables and water asset accounts
 - Data are usually dispersed in many agencies
 - Agricultural agencies collect information on irrigation water, water ministries collect information to construct water balances, etc.
 - Cooperation in needed
 - · Within statistical offices
 - Between statistical offices, water departments, economic/planning departments and agricultural departments
 - · With the water supply industry
 - · With the scientific and research communities
 - · Between users and producers of information

Water account - SEEA CF

A lot of progress can be made quickly...

- For example, Samoa, China, Mexico, Jordan and Dominican Republic were all able to produce preliminary accounts within 6 months
- For many countries and agencies is a matter of re-arranging current data to match the format of the standard tables and to ensure they are consistent with the definitions and classifications of SEFA
- In this process data gaps and deficiencies may be identified and, if important enough, these can be addressed

References

- Australian Bureau of Statistics (2014). Water Account, Australia, 2012-13. http://www.abs.gov.au/ausstats/abs@.nsf/mf/4610.0
- Dickson, B., Blaney, R., Miles, L., Regan, E., van Soesbergen, A., Väänänen, E., . . . van Bochove, J. (2014). *Towards a global map of natural capital: Key ecosystem assets.* (No. DEW/1824/NA). Nairobi, Kenya: UNEP.
- Statistics Canada. (2010). Human activity and the environment: Freshwater supply and demand in Canada (2010). (No. 16-201-XWE). Ottawa: Government of Canada.
- UNSD (2009) 5th World Water Forum Istanbul: Topic 6.4 Data for All, Turkey, http://unstats.un.org/unsd/envaccounting/workshops/wwf2009/topicOutline.pdf
- Vardon, M., Lenzen, M., Peevor, S., & Creaser, M. (2007). Water accounting in Australia. Ecological Economics, 61(4), 650-659.

Further Information

• System of Environmental-Economic Accounting, Central Framework (2012)