

Physical Flow Accounts

http://www.unescap.org/our-work/statistics

Outline

- Learning objectives
- Review of basics (10 min.)
- Level 1 What? Why? (compilers)
 - Concepts (25 min.)
 - Group exercise and discussion (30 min.)
- Level 2
 - Concepts (15 min)
 - Group discussion (10 min.)

Learning objectives

- Level 1
 - Understand what Physical Flows are and why they are important
 - Be familiar with the basic concepts
 - Understand how treated in the SEEA
 - Learn the steps of compiling Physical Flow Accounts
- Level 2
 - Understand further concepts required
 - Learn about data sources and measurement challenges

3 SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

What is physical flow accounting?

Environment accounts and statistics

SEEA-CF (Central Framework)	• Assets • Physical flows	 Minerals & Energy, Land, Timber, Soil, Water, Aquatic, Other Biological Materials, Energy, Water, Emissions, Effluents, Wastes
	• Monetary flows	 Protection expenditures, taxes & subsidies
SEEA Water; SEEA Energy; SEEA Agriculture, Forestry and Fisheries	Add sector detail	As above for Water Energy Agricultural, Forestry and Fisheries
SEEA-EEA (Experimental Ecosystem Accounting)	Adds spatial detail and ecosystem perspective	Extent, Condition, Ecosystem Services, Carbon, Water, Biodiversity
FDES (Framework for the Development of Environment Statistics)	Basic statistics for above plus	Extreme events and disastersHuman settlements and healthProtection, management & engagement

5 SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Physical flows in the SEEA (Ch. 3)

Accounts "balance the books"

- Source statistics, e.g.:
 - Water abstracted by municipal water supply
 - Water used for irrigation

come from different sources & use different:

- Methods, concepts and classifications
- Units of measure
- Accounting periods
- Accounts harmonize, integrate and improve source statistics
 - Show data gaps, duplication, inconsistencies
 - Fill data gaps (estimation)

7 SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Uses of physical flow accounts

Natural inputs

- Sustainable consumption and production
- Natural resource management (minerals, energy, water, food, timber)
- Footprint calculations
- Energy
 - Analyse supply/use, distribution
- Water
 - Analyse supply/use, distribution
- Residuals
 - Analyse air emissions, wastewater, solid
 - Total quantities, main sources

One application: Material footprint

Material footprint (tonnes/capita) 30 How can high 25 income countries be reducing? 2005 2015 **ESCAP** High income Myanmar Low income Upper Lower middle middle economies economies income income econ.

Material footprint: the total quantity of biomass, fossil fuels, metal ores and non-metal ores extracted globally and consumed in a country.

Basic concepts

- Physical flow accounting
- Physical supply and use tables
- The supply/use chain
- Accounting identities
- Definitions
 - Natural Inputs
 - Products
 - Residuals

11 SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Physical flows in the SEEA

Physical supply table

SEEA-CF - Physical flow account

Physical use table

The supply/use chains Table 3.1 General physical supply and use table Supply table

Natural inputs **supplied** by environment **→ used** by extraction, harvesting, capture industries

Products **supplied** by production and imports → **used** by intermediate consumption, households, accumulation and exports

Residuals **supplied** (generated) by all → **used** by collection & treatment, accumulation, export and environment

SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Accounting identities

Input-output identity

• Over an accounting period:

Natural Inputs
Resource
Residuals

Natural
Resource
Residuals

Products
Households
Government

Accumulation

Rest of the world

Environment

flows of materials **into** an economy =

flows of materials **out** of an economy

any **net additions** to stock in the economy (accumulation)

Accumulation can be big

What are all the non-metal ores being used for?

30,000

20,000

10,000

http://www.unescap.org/our-work/statistics

Accounting identities

■ Biomass ■ Non-metal ores ■ Fossil fuels ■ Metal ores

Supply and use identity (double entry accounting)

• Total **Supply** (including imports) = Total **Use** (including exports)

Total Supply of	= Total Use of
Natural Resource Inputs (TSNI)	= Natural Resource Inputs (TUNI)
Products (TSP)	= Products (TUP)
Residuals (TSR)	= Residuals (TUR)

Definitions: Natural inputs

3.45 ... all physical inputs that are **moved** from their location in the environment as a part of economic production processes or are directly used in production.

3323 01 11	atural Inputs	2	Inputs of energy from renewable sources
1	Natural resource inputs	2,1	Solar
1.1	Extraction used in production	2.2	Hydro
1.1.1	Mineral and energy resources	2.3	Wind
1.1.1.1	Oil resources	2.4	Wave and tidal
1.1.1.2	Natural gas resources	2.5	Geothermal
1.1.1.3	Coal and peat resources	2.6	Other electricity and heat
1.1.1.4	Non-metallic mineral resources (excluding coal and peat resources)	3	Other natural inputs
1.1.1.5	Metallic mineral resources	3.1	Inputs from soil
1.1.2	Soil resources (excavated)	3.1.1	Soil nutrients
1.1.3	Natural timber resources	3.1.2	Soil carbon
1.1.4	Natural aquatic resources	3.1.3	Other inputs from soil
1.1.5	Other natural biological resources (excluding timber and aquatic resources)	3.2	Inputs from air
1.1.6	Water resources	3.2.1	Nitrogen
1.1.6.1	Surface water	3.2.2	Oxygen
1.1.6.2	Groundwater \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ater?.2.3	Carbon dioxide
1.1.6.3	Soil water	3.2.4	Other inputs from air
1.2	Natural resource residuals	3.3	Other natural inputs n.e.c.

SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Definitions: Products

3.64 ...goods and services that result from a process of production in the economy (same as SNA)

CPC Ver.2

(Central Product Classification, Ver.2)

Click on any code to see more detail. Click here for top level only.

- x on any code to see more detail. Click here for top level only.

 ① Agriculture, forestry and fishery products

 ② Live animals and animals products (seduding meet)

 ② Live animals and animals products

 ② Forestry and logging products

 ③ Crea and minerals; electricity, gas and water

 ③ Live and injurity; products

 ③ Live and thought and the second concentrates

 ③ Forestry and and clay

 ③ Forestry and and clay

 ③ Forestry and and clay

 ② Forestry and and clay

 ② Forestry and and clay

 ② Forestry and and clay

 ③ Forestry and and clay

 § Forestry and
- 2 Food products, beverages and tobacco; textiles, apparel and leather products
 2 Food products, beverages and tobacco; textiles, apparel and leather products
 21 Heast, fish, fruit, vegetables, oils and fats
 22 Darry products and eag products
 23 Gerain mill products, starches and starch products; other food products
 24 Beverages
 25 Extella excluse other than apparel
 26 Varn and thread; woven and tuffed textile fabrics
 27 Textile articles other than apparel
 28 Leather and iteather products; ottoware

- 20 Knitted or crocheed fabrics, wearing apparel
 22 Leather and leather products; frottwear
 23 Leather and leather products; frottwear
 21 Products of wood, cork, straw and plating materials
 22 Pulp, paper and paper products; particle materials
 23 Pulp, paper and paper products; particle materials
 24 Cule cover products; refined patroleum products; nuclear fuel
 25 Cule cover products; refined patroleum products; nuclear fuel
 26 Rubber and plastics products
 27 Class and glass products and other non-metallic products n.e.c.
 28 Furniture; other transportable goods n.e.c.
 29 Waste or scraps
 4 Pelal products, machinery and equipment
 41 Spec metal
 42 General-purpose machinery
 43 General-purpose machinery
 44 Special-purpose machinery
 45 Office, accounting and computing machinery
 45 Office, accounting and computing machinery
 45 Control pulp of the products of the pro

- 5 Constructions and construction services

 53 Constructions
 54 Constructions envices

 52 Distributive trade services, accommodation, food and beverage serving services; transport services; and electricity, gas and water distribution services

 52 Retail trade services

 52 Retail trade services

 53 Accommodation, food and beverage services

 54 Accommodation, food and beverage services

 55 Freight transport services

 56 Rental services of transport verbles with operators

 57 Supporting transport services

 58 Postal and courier services

 58 Postal and courier services

 58 Postal and courier services

 58 Postal and related services and rental and leasing services

 57 Electricity, gas and water distribution (on own account)

 7 1 Financial and related services

 7 2 Real estates services

 7 2 Real estate services

 7 2 Real estate services

 8 13 Research and development services

 13 Research and development services

 13 Research and development services

 13 Support services on physical injust owned by others

 13 Telecommunications, broadcasting and information supply services

 18 Support services

 18 Support services

 18 Support services to agriculture, hunting, forestry, fishing, mining and utilities

 18 Maintenance, repair and installation (except construction) services

 18 Maintenance, repair and installation (except construction) services materials recovery services

 19 Public administration and other services provided to the community as a whole; compulsory social security services

 19 Services of membership organizations

 19 Services of membership organizations

 19 Services of membership organizations

 19 Services provided by extraterritorial organizations and bodies

Definitions: Residuals

2.92 ... flows of **solid**, **liquid and gaseous materials**, and energy, that are

- discarded, discharged or emitted by establishments and households
- through processes of production, consumption or accumulation

Table 3.4 Typical components for groups of residuals

Group	Typical components
Solid waste (includes recovered materials) ^a	Chemical and health-care waste, radioactive waste, metallic waste, other recyclables, discarded equipment and vehicles, animal and vegetal wastes, mixed residential and commercial waste, mineral wastes and soil, combustion wastes, other wastes
Wastewatera	Water for treatment and disposal, return flows, reused water
Emissions to air	Carbon dioxide, methane, dinotrogen oxide, nitrous oxides, hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride, carbon monoxide, non-methane volatile organic compounds, sulphur dioxide, ammonia, heavy metals, persistent organic pollutants, particulates (e.g., PM10 dust)
Emissions to water	Nitrogen compounds, phosphorus compounds, heavy metals, other substances and (organic) compounds
Emissions to soil	Leaks from pipelines, chemical spills
Residuals from dissipative use of products	Unabsorbed nutrients from fertilizers, salt spread on roads
Dissipative losses	Abrasion (tyres/brakes), erosion/corrosion of infrastructure (roads, etc.)
Natural resource residuals	Mining overburden, felling residues, discarded catch

a This list of typical components for groups of residuals can also be applied to certain flows defined as products.

SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Compilation exercise

Compile a <u>physical supply and use table</u> for oil resources:

- Oil resources extracted by **Mining** (100 mln kg)
- Mining supplies 100 mln kg crude oil to Refining
- Refining produces 80 mln kg petrol
 - Exports 50 mln kg petrol
 - Supplies 30 mln kg petrol to Households (all is burned)
 - Burns 20 mln kg crude oil for own consumption
- Burning (combustion):
 - Uses 3 units oxygen (O₂) per unit crude oil or petrol
 - Creates 4 units of CO₂ per unit of crude oil or petrol

Complete the table

How?

A. Follow the supply/use chain

B. Burning 1 kg crude oil and petrol uses 3 kg O2 to create 4 kg CO2

C. Calculate column and row totals and check accounting identities (supply = use)

D. Questions:

- Total natural inputs?
- Total products?
- Total residuals?
- Total materials?

Supply (mln kg)		Indu	stry				
		Mining	Refining	Households	Import	Environment	Total
Natural Inc.	Oil resources					100	100
Natural Inputs	02		/			150	150
Products	Crude oil	3 100					100
Products	Petrol		80				80
Residuals	CO ₂	T (\	5 80	120			200
Total		100	160	120	0	250	630
			\ T./				
Use (mln kg)		Indu	stry				
		Mining	Refining	Households	Export	Environment	Total
Natural Inputs	Oil resources	2 100					100
Naturai inputs	02		60	90			150
	Crude oil		/ 80	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			80
Products	Crude oil (own consumption)		20	\setminus			20
	Petrol			30	50		80
Residuals	CO ₂					200	200
Total		100	160	120	50	200	630

The supply/use chain

<u>Supplier</u> <u>User</u>

1 Environment → 2 Mining 3 Mining & imports → 4 Refining

5 Refining → 6 Households & Exports

23 SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Answers

Total natural inputs = 250 Total products = 180 Total residuals = 200 Total materials = 630

Supply (mln kg)		Indu	stry				
		Mining	Refining	Households	Import	Environment	Total
	Oil resources					100	100
Natural Inputs	O ₂					150	150
Products	Crude oil	100					100
	Petrol		80				80
Residuals	CO ₂		80	120			200
Total		100	160	120	0	250	630
Use (mln kg)		Indu	stry				
		Mining	Refining	Households	Export	Environment	Total
Natural Inc.	Oil resources	100					100
Natural Inputs	O ₂		60	90			150
	Crude oil		80				80
Products	Crude oil (own consumption)		20				20
	Petrol			30	50		80
Residuals	CO ₂					200	200
Total		100	160	120	50	200	630

Answers: Why?

Data sources:

- Corporate reports
- Agencies: Mining
- Taxes, concessions

Environment supplies 100 mln kg oil resources to Mining

Supply (mln kg)		Indu	stry				
		Mining	Refining	Households	Import	Environment	Total
	Oil resources					100	100
Natural Inputs	O ₂					150	150
Products	Crude oil	100					100
Products	Petrol		80				80
Residuals	CO ₂		80	120			200
Total		100	160	120	0	250	630
Use (mln kg)	Use (mln kg)		Industry				
		Mining	Refining	Households	Export	Environment	Total
National Insula	Oil resources	100					100
Natural Inputs	02		60	90			150
	Crude oil		80				80
Products	Crude oil (own consumption)		20				20
	Petrol			30	50		80
Residuals	CO ₂					200	200
Total		100	160	120	50	200	630

SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Data sources:
- Corporate reports

Agencies: Energy, CustomsTaxes, surveys (\$\$\$)

Answers: Why?

J

Mining supplies 100 mln kg crude oil to **Refining Refining** consumes 20 mln kg crude oil

Supply (mln kg)		Indu	stry	Households	Import	Environment	Total
		Mining	Refining				
National Invita	Oil resources					100	100
Natural Inputs	02					150	150
Products	Crude oil	100					100
	Petrol		80				80
Residuals	CO ₂		80	120			200
Total		100	160	120	0	250	630
Use (mln kg)		Industry					
		Mining	Refining	Households	Export	Environment	Total
National Invita	Oil resources	100					100
Natural Inputs	O_2		60	90			150
	Crude oil		80				80
Products	Crude oil (own consumption)		20				20
104400	Petrol			30	50		80
Residuals	CO ₂					200	200
Total		100	160	120	50	200	630

Answers: Why?

Data sources:

Household, business surveys Agencies: Transport, Customs Retail trade

Refining supplies 30 mln kg petrol to **Households** and 50 mln kg to **Exports**

Supply (mln kg)		Indu	stry				
		Mining	Refining	Households	Import	Environment	Total
	Oil resources					100	100
Natural Inputs	02					150	150
Products	Crude oil	100					100
rioducts	Petrol		80				80
Residuals	CO ₂		80	120			200
Total		100	160	120	0	250	630
Use (mln kg)		Industry					
		Mining	Refining	Households	Export	Environment	Total
	Oil resources	100					100
Natural Inputs	02		60	90			150
	Crude oil		80				80
Products	Crude oil (own consumption)		20				20
	Petrol			30	50		80
Residuals	CO ₂					200	200
Total		100	160	120	50	200	630

SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Answers: Why?

Data sources: Calculated

Refining burns 20 mln kg crude oil, **environment** supplies 60 mln kg O2 to supply 80 mln kg CO2

Households burn 30 mln kg petrol, **environment** supplies 90 mln kg O2 to supply 120 mln kg CO2

Supply (mln kg)		Indu	stry		1		
		Mining	Refining	Households	Import	Environment	Total
Natural Inquite	Oil resources					100	100
ivaturai iriputs	02					150	150
Products Residuals Fotal Jse (mln kg) Natural Inputs	Crude oil	100					100
Products	Petrol		80				80
Residuals	CO ₂		80	120			200
Total		100	160	120	0	250	630
Use (mln kg)	Jse (mln kg)		Industry				
		Mining	Refining	Households	Export	Environment	Total
Natural Inquite	Oil resources	100					100
ivaturai iriputs	O ₂		60	90			150
	Crude oil		80				80
Products	Crude oil (own consumption)		20				20
	Petrol			30	50		80
Residuals	CO ₂					200	200
Total		100	160	120	50	200	630

200 mln kg CO2 are used by the environment

Welcome to Level 2!

- A few more concepts
 - Types of natural resource residuals
 - Is it a product or a residual?
 - Transboundary flows
 - How to account for losses
- Data sources
- Compilation challenges
- Discussion on country priorities

SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Concepts

• Types of natural resource residuals

Losses during extraction

Resources the extractor would prefer to retain.

Example: Losses of natural gas through flaring and venting

Unused extraction

Resources in which the extractor has no ongoing interest.

Example: Mining overburden; mine de-watering; discarded fish catch

Reinjections

Natural resources extracted but immediately returned to the deposit and may be re-extracted at a later time.

Example: Water injected into aquifer; natural gas reinjection

Concepts

- Product or residual?
 - If *payment* made = solid waste **product**
- Natural Inputs Natural Resource Residuals Products Households Government Rest of the world

Environment

- Example: recycled materials
 - Household
 - Newspapers = whether recycling bin or garbage → residual
 - Recycling industry: **recovers** residual → product
 - Waste management industry → solid waste → residual
 - Business
 - Newspapers = in recycling bin
 - **Sell** to Recycling industry → product

SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Econon

Environment

Concepts

- Only **products** are imported and exported (includes solid waste "products" such as scrap metal)
- **Residuals** (e.g. wastewater, air emissions, solid wastes) flow within the environment
- Water asset accounts do track inflows & outflows

Concepts

"Losses" are residuals the supplier would prefer to retain

Losses during extraction

...occur during extraction before processing...

Losses during distribution

...between abstraction, extraction or supply and point of use...

Losses during storage

...energy products and materials...

Losses during transformation

...heat energy...

33 SEEA-CF - Physical flow accoun

http://www.unescap.org/our-work/statistics

Data sources

- Industry & household surveys
 - Inputs/outputs of materials, energy, water, residuals
 - Government/private waste management
- Administrative & regulatory data
 - Imports, exports, consumption
 - Pollutant release and transfer register
- Field measurement
 - Waste, water, energy, materials audits
 - Engineering design factors (estimate losses...)
- Existing statistics
 - National Accounts (\$ supply/use to estimate physical)
 - Energy balances
 - Company reports

Data sources

UN Environment: *Indicators for a Resource Efficient and Green Asia and the Pacific: Toolkit Page*

- National and international sources
- Visualize data
- Download data

http://web.unep.org/asiapacific/regionalinitiatives/resource-efficiency

35 SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Compilation challenges

- Correcting for **residence principle**
 - Tourists, foreign airplanes ≠ consumers
- Disaggregating & linking information to ISIC
 - Details, details (material type...)
 - Data may be on "activity" (fuel used for transport)
 - Household "sector" engaged in productive activity
- Consistency with National Accounts concepts
 - Within enterprise flows in SEEA (not in SNA) *
- Compiling time series
 - Sources and detail change over time (e.g., industry surveys include quantities or \$ value)
 - Prices change over time (price × volume = value)

Remember example: Refining consumed crude oil.

Documentation challenges

- There are some inconsistencies between SEEA-CF and SEEA-Water
 - SEEA-Water is based on SEEA-2003
 - e.g., "Supply" / "Use"
 - e.g., "Consumption" = "Use"
 - Extraction/abstraction = Supply
- SEEA-Energy is based on SEEA-CF 2012
- Suggest using SEEA-CF (2012) as the primary guidance and sub-components for details

37 SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Discussion

- Which physical flow accounts could be a priority in your country?
 - Materials, Water, Energy
 - Solid Wastes, Air emissions, Wastewater
- What sources of data do you have?
- What are the gaps?
- What would be the next steps:
 - New data?
 - Collaborate with data sources? Stakeholders? Funding?
 - Learn how to create accounts?

References

- SEEA-CF:
 - http://unstats.un.org/unsd/envaccounting/seeaRev/SEEA CF Final en.pdf
- SEEA-Energy:
 - http://unstats.un.org/unsd/envaccounting/seeae/chapterList.asp
- SEEA-Water:
 - http://unstats.un.org/unsd/envaccounting/seeaw/seeawaterwebversion.pdf
- SEEA-Agriculture, Forestry and Fisheries: http://unstats.un.org/unsd/envaccounting/aff/2GC_Draft.pdf
- OECD PRTR (Pollutant release and transfer registry): http://www.oecd.org/chemicalsafety/pollutant-release-transfer-register/
- UNEP: Indicators for a Resource Efficient and Green Asia and the Pacific: Toolkit Page
 - http://www.unep.org/roap/Activities/ResourceEfficiency/IndicatorsforaResourceEfficient/tabid/1060186/Default.aspx

39 SEEA-CF - Physical flow account

http://www.unescap.org/our-work/statistics

Acknowledgements

- Materials prepared by:
 - Michael Bordt
 - Regional Adviser on Environment Statistics ESCAP Statistics Division bordt@un.org
- Materials adapted from:
 - Joe St. Lawrence (Statistics Canada; Chiba, Japan; Feb. 23, 2016)
 - Julian Chow (UNSD; Malaysia; Sept. 23, 2013)
 - Ole Gravgård (Statistics Denmark; Addis Ababa, Ethiopia; Feb. 2, 2015)