An Introduction to Stata for
Survey Data Analysis

Olivier Dupriez, World Bank
March 2017

When you launch Stata ...

[tamtamap 141
Fle [dz D

Comenaed e | A= eessri fesencen tn (Mame Label

Properties

LLLLLLLL

CAUer WEL4 P65 Do urments\Statal 4\ Data

Three ways of executing Stata commands

* Menus and dialogs (the Graphical User Interface)
* The command line

» Writing programs (do files)

Option 1: the Stata Graphical User Interface

ST TR - __ The User Interface
' Som. mERmmiEsssms o - - allows for a lot of
<% menu-driven and

dialog-driven tasks

DUt w27 BUT this s not the way
: professional use Stata

Option 2: the command line

Commands are typed in the “Command” window for immediate
execution.

To execute a command, type it in the command line and press Enter

Command

Option 3: writing programs (do-files)

* Professionals will:
¢ Write programs (do-files), not use the menu=driven or command line options
* If relevant, write or use ado programs (specialized contributed packages)
* Why?
* To be able to preserve, replicate, share, update, build on, re-use, and re-purpose
their analysis

¢ To document the analytical process
* To automate some tasks

* Note: The menu-driven option remains useful for writing programs, as it
automatically translates your selections into a command which you can
copy and paste in your do files. For Stata beginners, this can help.

Accessing the do-file editor

* Do-files are text files (with .do extension) that can be produced using
any text editor

e Recommendation: use the Stata do-file editor

| Do-file Editer - Untitled do 2 o

inr.e Edit View Project Tools

i CEusa s Dne-EF
Eifl Stata/MP 14.1
File Edit Data Graphics Statistics User Window Help |
EEJEL dE'__ {EEE00
Open the do file editor

Line: 1, Cok 1

Executing commands from the do-file editor

Type your
program in the
do-file editor 2>

Select
(highlight) the
commands
you want to
execute =2

Click on the
EXECUTE icon

" Do-file Editor - FSM_HIES2013_prep_files.do
File Edit View Project Tools
‘= A a S Al

Untitled.do *

127 gen age0_5=0

128 replace ageO 5=1 if inlist(gl0104,25,30,35,40,45,50,55,60)
129 gen age23 62=0

130 replace age23 62=1 if inrange(ql0104,23,62)

I - pse (sum) agel 5 age23 62, by(id01)
132 gen whipple= (age0_5 * 100} / (age23_62 / 5)
133 table id0l1l, c{mean whipple)
134
135
136 restore, preserve
137 gen head=gl0106==1
138 bysort hhid: egen nbheads=total (head)
139 assert nbheads==1
140 |
141
142
143

ionship is "Spouse", must be married or in union

9 if gl0l06==2 & !inlist(gl0109,2,3)

~

LEEsRs DD 0T ¥

fy
¥

Ado files (contributed packages)

ado files

* ADO files are user-contributed packages that can be installed in Stata,
to add specialized functionalities to Stata

* A large collection of ado packages is available on-line
* They can be found using the Find i1t command in Stata
* E.g., to find programs for inequality analysis: Findit inequality
 They can also be installed from within Stata using “ssc 1nstall”

* E.g.
» ssc install inequal?
« ssc install poverty

Some useful ado files

* For producing tables (in addition to Stata tabulation commands)
» Tabout (beta version at
http://tabout.net._au/docs/home.php)
* For producing maps (see section on maps in this presentation)
* shp2dta, spmap

* For poverty and inequality analysis
* povdeco, poverty, inegqdeco, inequal7, glorenz

e Foryou?
* Find out using findit

Before we start...

Good practice for data analysis

Some important rules to follow:

e Understand your data before you analyze them

* Document your dataset

* Protect your data — Work on a copy, not on the original dataset
e Make everything reversible and reproducible

* Document your Stata programs

Some fundamental information

* Variable names can be up to 32 characters

* Variables in a Stata file can be either numeric or alphanumeric (string
variable)

e Stata is case sensitive (for commands, variable names, etc.)

e Commands must be typed in lowercase (example: use is a valid command;
but if you type USE it will not work)

* Avariable named Age is not the same as a variable named age

Getting help

e Stata has a very large number of commands. Each command has a
syntax, and often provide multiple options.

e Users will very often rely on the on-line Help to find out how to
implement a command

 The Stata command to get help on a command is he I p followed by
the name of the command, e.g. help merge

* Understanding how to read the syntax of a command is very
important

* If you do not know the name of the command, use the search
function

15

Syntax of commands

With few exceptions, the basic Stata language syntax is

[by varlist:] command [varlist=exp] [if exp] [in range] [weight] [, options]

Where:
e square brackets distinguish optional qualifiers and options from required ones.

¢ varlist denotes a list of variable names, command denotes a Stata command,
exp denotes an algebraic expression, range denotes an observation range,
weight denotes a weighting expression, and options denotes a list of options.

Example of syntax

Type help summarize inthe command line. The summarize command
calculates and displays a variety of univariate summary statistics. We syntax is:

summarize [varlist] [if] [in] [weight] [, options]

Options Description
detail display additional statistics
meanonly suppress the display; calculate only the mean; programmer®s option
format use variable"s display format
separator(#) draw separator line after every # variables; default is separator(5)

display_options control spacing, line width, and base and empty cells

17

Short and abbreviated name of commands

 Command (and variable) names can generally be abbreviated to save
typing.
* As a general rule, command, option, and variable names may be

abbreviated to the shortest string of characters that uniquely
identifies them.

* For instance, typing Su (or summ) instead of summarize will work.

* This rule is violated if the command or option does something that
cannot easily be undone; the command must then be spelled out in
its entirety.

* The syntax underlines the minimum set of characters needed

Examples

Syntax

regress depvar [indepvars] [if] [in] [weight] [, options]

*

Describe data in memory
describe [varlist] [, memory options]

a _

recode varlist (rule) [(rule) ...] [, generate(newvar))]

*

Analysis of sample survey data:
Survey design, sample weights,
and the svy commands

A brief reminder on sampling design

* We are interested in using Stata for survey data analysis
* Survey data are collected from a sample of the population of interest

* Each observation in the dataset represents multiple observations in
the total population

e Sample can be drawn in multiple ways: simple random, stratified, etc.

e For example: randomly select N villages in each province first, then 15
households in each village

e Sample weights are variables that indicate how many units in the
population each observation represents

Sampling weights

* Sample weights are typically the inverse of the probability for an
observation of being selected

* Example: in a simple random selection, if the total population has
1,000,000 households and we draw a sample of 5,000:

* The probability of being selected is 5,000 / 1,000,000 = 0.005
* The sample weight of each household will be 1,000,000 / 5,000 = 200

* In more complex sample designs, the sample weight will be different for
each region, or enumeration area, etc.

* When we produce estimates (of totals, means, ratios, etc.) we need to
apply these weights to have estimates that represent the population and
not the sample (i.e. we need “weighted estimates”)

Working on data files

23
The structure of a Stata data file
Variables
Y Y) | Y Y Y
iid sex age relation marital rururb wta hh PROV DIST
1 1 05 12 3 1 2507.0 0 00
w2 08 2 5 1 2507.0
-
O b 3 42 2 1 2507.0
2 4 g 1 1 1 2507.01
0
¢ B 2 3 2 1 2507.01
| .
()] » 6 3 2 1 507.0
7]
_Q > 32 4 1 1 2507.01
O 5% 22 3 1 1 2507.01
'S 9 kY 2 1 507.

24

Opening a data file

Syntax:

use Filename, clear

If no path is specified, Stata will look in the default directory. You can find what is the
default data directory by typing “cd” or “pwd” in the command line. You can change the
directory by typing cd “path”.

Example:

use ""C:\Stata_Fiji\Data\household.dta'", clear
or

cd "C:\Stata Fiji\Data"

use "household.dta", clear

25

Sorting a data file - sort

Syntax:
sort varlist

Example:
sort hhid totexp

26

Sorting a data file - gsort

* The sort command will sort by ascending value of the selected
variable(s)

* To sort in descending order, use the gsort command
* Syntax:

* The options allow you, among other things, to generate a variable
with a sequential number of the ordered records.

e Example: to sort a data file by decreasing order of variable 1ncome:
gsort -tot_exp hhid

Compressing and saving data files

* Compressing
e compress attempts to reduce the amount of memory used by your data.
* It never results in loss of precision
* Note: this is not the same as zipping files.
* Saving Stata data files
* save [filename] [, save_options]
* E.g., save "household.dta", replace

* Files saved in Stata 14 will not be readable with previous versions of
the software. If you need to save data in an older format, use option
saveold.

Browsing (viewing) the data

File

EdS

Edit Data Statistics User

=-u- H-H@] oo

Graphics

Window Help

hhid province district ea urbrur hhno hhsize dwelling
il 532 West 11 104 Urban 0532 4 Detached House
2 380 East a8 T4 Urban 0380 3 Detached House
3 950 South 20 188 Urban 0950 L] Detached House
4 533 West 11 104 Urban 0533 1 Detached House
5 568 West 1 112 Urban 0568 3 Detached House
[865 South 18 171 Urban 08es T Detached House
7 T46 South 16 148 Urban 7 Detached House
8 806 South 17 1e0 Urban 4 Detached House
29
. . L3 . .
Inspectlng data files — File deSCFIptIOI’l
describe [varlist] [, memory_options]
Contains data from C:\Stata Manual\Data\household.dta
obs: 1,000 Data file distributed with the Stata m
vars: 29 17 Mar 2017 11:495
size: 75,000 (_dta has notes)
storage display value
variable name type format label variable label
hhid int %9.0g Household ID
province byte %10.0g province Province
district byte %9.0g District
ea int %$9.0g Enumeration area
urbrur byte .0g urbrur Rural /urban
hhno strd %9s Household number
hhsize byte %16.0g Household size
dwelling byte %23.0g dwelling Type of dwelling
water byte -0g water Main source of drinking water
toilet byte %16.0g toilet Toilet facility
wall hute 1A N wall Main wall matarial 30

Inspecting data files — Summary statistics

summar i ze calculates and displays a variety of univariate summary
statistics. If no var l 1st is specified, summary statistics are calculated for
all the variables in the dataset.

summarize [varlist] [i1f] [in] [weight] [, options]

Examples:
summarize
summarize [weight=hhwgt]
summarize [weight=hhwgt] i1f province==1

31

Inspecting data files — Counting records

count counts the number of observations that satisfy the specified
conditions. If no conditions are specified, count displays the number of
observations in the data.

count [1f] [in]

Examples:

use "'C:\Stata_Fiji\individual.dta", clear
count

count if sex == 1

count If sex == 2 & age > 12 & age < .

32

Inspecting data files — Listing observations

list allows you to view the values in selected observations
list [varlist] [if] [in] [, options]

Examples:

List of top 5 observations:
list in 1/5

Display ID, province and sex for people aged 25 or 30
list hhid province sex if age == 25 | age == 30

33

Inspecting data files — Inspect command

The 1nspect command provides a quick summary of a numeric
variable, different from the summarize command.

inspect [varlist] [i1f] [in]
marital: Marital status Number of Observations
EE)(EE rT1 F)IGE: . N Total Integers Nenintegers
Inspect marital :
(marital status) 2>

3,926 3,926

a4 3 3 3k 3
4 3 W I S

Total 3,926 3,926

1 4 3,926
(4 unique values)

34

Inspecting data files — Produce a codebook

codebook examines the variable names, labels, and data to produce a
codebook describing the dataset.

codebook [varlist] [if] [in] [, options]

Examples:
codebook //allvariables in data file
codebook sex-literate //variablessexto literate
codebook hh* //all variables with name starting with hh

35

Appending data files

append appends Stata-format datasets stored on disk to the end of
the dataset in memory.

append using filename [filename ...] [, options]

36

Hierarchical structure of survey datasets

* Survey datasets are typically made of multiple related data files

* For example, in a household survey, one file may contain:
* Demographic information (1 observation per person)
Data on education (1 observation per person aged 4+)
Data on employment (1 observation per person aged 15+)
Data on births (1 observation per woman aged 12 to 49)
Data on dwelling characteristics (1 observation per household)

Data on expenditures (1 observation per product/service per household)
* Etc.

* We need “keys” (common variables) to merge these files

37
Hi hical struct d k
Individual-level data [] or > rows per household Ii'l per household :|:-'||:5-»‘|:Ij
PROVINCE |D‘Imc‘r VILLAGE EA HH_NUM PERSON_NO AGE SEX RELATION MARITAL EDUCATION OCCUPATION
o1 01 005 10 008 o0 45 1 1 2 4 21
o1 o1 005 10 008 02 42 2 2 2 2 10
o1 o1 005 10 003 o1 38 1 1 2 3 03
o1 o1 005 10 009 02 34 2 2 - 3 03
o1 o1 005 10 009 03 8 2 3 1 1
o1 o1 005 10 009 04 5 1 3 1 0 .
02 01 04 05 103 01 75 1 1 2 0 15
02 o1 04 05 103 02 70 2 2 2 1 10
Household-level data (1 row per household)
EA HH_NUM ROOF WALLS WATER
01 01 005 10 008 1 3 2
01 01 005 10 009 2 3 1
02 01 04 05 103 4 2 2

38

Merging data files

* Merging data files is a crucial operation . s e o s s o g
for survey data analysis and it is e
important to fully master it.

* The objective is to merge observations
found in 2 different data files based on
“key variables” (variables common to
both datasets)

e Key variables are the identifiers of the T e et e
observations (e.g., identifier of the -
household)

39

Merging data files

The relationship between 2 data files can be of different types. The most important
for survey data analysts are:

* The one-to-one relationships (where one observation from the source file has
only one observation in the merged file)
e For example: One file contains the demographic information about individuals; the other one
contains the employment variables for the same sample.
e The many-to-one relationships (where multiple observations in the source file
correspond to one observation in the merged file)

¢ For example: One file contains the information on individuals (age, sex, etc.) and the other
one contains information on dwelling characteristics. For all members of a same household,
there will be one and only one observation about the dwelling characteristics.

40

Merging data files

* To merge observations, we need key variables which are variables
common to both data files being merged.

* In the exercise data files, each household has a unique identifier
(variable hhid) and each household member is uniquely identified
by a combination of two variables: hhid (which identifies the
household) and 1ndid which identifies the person within the
household.

* In principle, hhid is unique to each household in the household-
level file, and the combination of hhid and 1ndid is unique to
each individual in the person-level data file.

e If that is not the case, the merging will not be successful.

41

Merging data files — The syntax

* One-to-one merge on specified key variables
merge 1:1 varlist using filename [, options]

* Many-to-one merge on specified key variables
merge m:1 varlist using filename [, options]

IMPORTANT: Data files must be sorted by the key variables for merge
to work. If the data are not sorted, you will get an error message.

42

Merging data files — The _merge variable

The merge command generates a new variable named _merge that
reports on the outcome of the merging. The variable can take 5
possible values. Values 1 to 3 are particularly relevant:

1 - observation appeared in master file only
2 —> observation appeared in “using” file only
3 - match: observation appeared in both data files

Checking unicity of key(s)

* We can easily check that the key variable(s) provide(s) a unique
identification of each observation, using the 1Isid command.

isid varlist

* |f there are duplicates, it means that you did not identify the right
variables as keys, or that there are problems in the data files

* Duplicates can be identified and listed using the dupl 1cates
command.

Tagging duplicates (an example)
To find duplicates = Use “tag” option of dupl icates command
duplicates tag [varlist] [i1f] [in] , generate(nhewvar)

Example:

duplicates tag hhid indid, generate(isdup)
tabulate 1sdup

45

Merging data files — Examples

* One-to-one merge on specified key variables (FSM HIES 2013 data files)
use "household.dta™, clear
merge 1:1 hhid using "dwelling.dta"
tab _merge

* Many-to-one merge on specified key variables
use "individual .dta", clear
merge m:1 hhid using "household.dta"
tab _merge

46

Working with variables

Variables — The basics

* Variable names can be up to 32 characters

* Stata is case sensitive

e Variables in a Stata file can be either numeric or alphanumeric (string)
 Variable names can be abbreviated (like commands)

e Use of *and ?

e List of variables: v3-v7

Labeling variables and values

Variables should be documented.
e All variables should have a label. A variable label is a description (up
to 80 characters) of the variable.

* All categorical variables should also have value labels. Value labels are
the descriptions of the codes used in categorical variables (e.g., for
variable sex, 1 = “Male” and 2 = “Female”)

* Labels help you identify variables, and will be used by Stata when
tables or other outputs are produced

Labeling variables

To add a label to a variable:
label variable varname ['label™]

To change or modify a variable label: same command (will overwrite
the existing label)

Labeling values

Add value labels is a two-step process: we first define a set of labels
(label define), then attach it to a variable (label values).

A same set can be used for multiple variables.

For example:
label variable sex "Sex™
label define gender 1 "Male"™ 2 "Female"

label value sex gender

Modifying and eliminating value labels

To add or modify value labels:

Example:
label define sex 1 "Male™ 2 "Girl"

label define sex 2 "Female', modify
label define sex 3 "Unknown', add

To eliminate value labels:

Example:
label drop sex

Tabulating values of a variable

Note: we will see later how to produce cross-tables of summary statistics.
tabulate varname [if] [in] [weight] [, tabulatel options]
A useful option is “nol” (no label)
Examples:
use "individual.dta", clear
tabulate marital
tabulate marital, nol

tabulate marital, sort
tabulate marital if sex == 1

53

Generating new numeric variables

* In Stata, you can generate a new variable using the command
generate. The general syntax is:

generate newvarname = expression

* You cannot generate a variable if a variable with the same name
already exists

* Use the command replace to assign new values to an existing
variable

54

Operators

Relational operators Logical operators Mathematical operators
< (less than) | (or) +

> (greater than) & (and) -

== (equal) ~ (not) *

<= (less than or equal) /

>= (greater than or equal) A

I= or ~= (not equal)

55

Mathematical functions

If x is @ numeric variable:

abs(x) the absolute value of x

exp(x) The exponential function of x

int(x) the integer obtained by truncating x toward 0 (thus, int(5.2) =5 and int(-5.8) =
-5)

In(x) or log(x) the natural logarithm, In(x)

max(x1,x2,: : :,xn) the maximum value of x1; x2; : ::; xn

min(x1,x2,: : :,xn) the minimum value of x1; x2; :::; xn

mod(x,y)

the modulus of x with respectto y

round(x,y) or round(x)

x rounded in units of y or x rounded to the nearest integer if the argument y is
omitted

sqrtfx)

the square root of x

sum(x)

the running sum of x, treating missing values as zero

56

Missing values

e Missing values in Stata are indicated by a dot (.)

e Stata has the possibility to create different types of missing values
e ./ .a/ .b/ etc. until.z
By default, the simple dot is used (.)

e IMPORTANT: . Is considered by Stata as the largest positive value
(infinity). This means that the “value” of . Is greater than any number.

* This has important implications when we work with variables:
* To count the number of observations for which variable age is missing, type:
count i1If age >=.

* To create a new variable and assign value 1 if age is greater than 65, type:
generate elderly = 1 if age > 65 & age < .

Generating variables — Some examples

generate X = 1

generate X = age if age > 20

generate X = In(tot_exp)

generate X = .

generate X = "FijI'" (- create astring variable)

Note: if one component of the operation is missing, the result is missing (e.g., 1 +.=.)

A shortcut to create a dummy variable (values 0 and 1):
generate poor = pcexp > povline
- Will have value 1 if pcexp > povline, and 0 otherwise

This does the same as:
generate poor = 0
replace poor = 1 if pcexp > povline

Recoding variables

Syntax:
recode varlist (rule) [(rule) ...] [, generate(newvar)]
rule Exanple Meaning
g = £ 3= 3 recoded to 1
g =14 2 . =39 2 and . recoded to 9
#E=# 1/5 = 4 1 through 5 recoded to 4
nommissing = nonmiss = 8 all other nonmis=sing to 8
mizsing = # miss = 8§ a2ll other missings to 9

59

Recoding variables — Example

Creating age groups by recoding age

recode age (074 = 0) (6/9 = 5) (10714 = 14) ..

(90/max=90), generate(agegroup)

60

The commands encode and decode

* Use encode to convert strings into numeric variables. Stata will
create a new (numeric) variable by automatically assigning numeric
codes and create the corresponding value labels.

Example: encode prov, generate(province)

* Use decode to do the opposite. Stata will generate a new (string)
variable containing the label of the numeric variable

Example: decode sex , generate(gender)

inlistand Inrange

inlist() and inrange() are useful programming functions
associated with commands that are often used.

Examples of use:
generate region = 1 1f inlist(province,b3,4,7)
generate reprodw = 1 if inrange(age,12,49) & sex==2

Operations on string variables

* In some cases, numeric variable may have been imported as string
variables (e.g., 1 will not be considered as value 1, but as an
alphanumeric character)

* You cannot perform mathematical operations on string variables
* Note: in the Stata browser, string variables will be displayed in red

* You can convert a variable from string to numeric type by using the
destring [variablename] command. This will only work if the
variable only contains numbers, not letters.

* Stata provides many functions for working with string variables
(including functions to subset strings, concatenate, etc.)

Operations on string variables — Some functions

* abbrev(s,n) -2 returnss (=text) abbreviated to a length of n

* substr(s,nl,n2) - returnsthe substring of s, starting at position
nl, for a length of n2

e striower(s) / strupper(s) -2 convertsto lower (upper) case
* Functions can be combined (nested) into one command

* Strings can be combined using “ + “
* Example:
generate staff = "Pierre”
generate staff2 = strupper(substr(staff,1,4))+ "."

Renaming variables

rename changes the name of an existing variable

Example: rename age age_years

Stata provides some functions for renaming groups of variables;
see help rename group

Deleting (or keeping) variables

» drop eliminates variables from the data file in memory.

» keep works the same as drop, except that you specify the variables to
be kept rather than the variables to be deleted.

» Warning: drop and keep are not reversible (there is no “undo”). Once
you have eliminated variables, you cannot read them back in again. You
would need to go back to the original dataset and read it in again.

e Examples:
e drop _merge
* keep hhid ql1*

Deleting (or keeping) observations

* The same commands drop and keep can be used to select observations

» drop eliminates observation; keep works the same as drop, except
that you specify the observations to be kept rather than the ones to be

deleted.

» Warning: drop and keep are not reversible. Once you have eliminated
observations, you cannot read them back in again. You would need to

go back to the original dataset and read it in again.
* Examples:
*drop if age ==.
* keep 1T age < .

Ordering variables

order changes the sequence in which the variables are listed in a data file. It does not
change the value of the data. This will typically be done to ensure that some key variables

are displayed on top of the list.

You only have to list the variables you want to be displayed first. For example:

use "individual.dta™, clear

describe

order hhid indid ea

describe
]:\hic.:l int 19. 0g Houfei.wld 1D hhi(_i nt ' q
;:‘::?nce :: : I province ;::i::\::al & - ::d‘d :I.:' 5] .
district byte %9.0g Distriect province byte %10.0g

ea int %9.0g Enumeration area district %9.0g

urbrur byte %9.0g urbrur Rural/urban urbrur byt k9.0g urbrur

Household ID
Individual ID
Enumeration area
Province
District
Rural/urban

Generating new variables with egen

* egen creates new variables representing summary statistics (calculated in
rows or columns)

* egen uses functions specifically written for it
* The syntax is:
egen [type] newvar = fcn(arguments) [1f] [in] [, options]

* The functions include count(), 1qr(), min(Q, max(),
mean(), median(), mode(), rank(), pctile(), sd(Q),
and total ().

* These functionstakeaby . . . : prefix which allow calculation of
summary statistics within each by-group.

Use of egen —Some examples

use "individual .dta'", clear

* Add a variable with the age of the oldest hhld member for each hhlid
egen oldest = max(age), by(hhid)

* Add the number of members declared as “spouse”
generate spouse= 1 if relat ==

egen numsp = sum(spouse), by(hhid)
tabulate numsp

Use of egen —Some examples (cont.)

egen = rank() creates a variable assigning the rank of a variable. For
example, with a variable tot_exp:

«egen rank0 = rank(tot_exp), Ffield - assignsrank=1
to the highest income, etc (no correction for ties; if 2 observations
have the same income, they will have the same rank)

« egen rankl = rank(tot_exp), track - assignsrank=1
to the lowest income, with no correction for ties)

« egen rank2 = rank(tot _exp), unique -» assignsrank=1
to the lowest income; all observations have a different rank (random
allocation in case of ties)

Producing deciles or quintiles using Xt le

* The command Xti le is used for example to generate quintiles or deciles based
on the values of a variable (e.g., quintiles of per capita expenditure - pce)

xtile newvar = exp [i1f] [in] [weight] [, xtile_options]

* Depending on the weight we use in a household survey, we would generate
quintiles of households (20% of households in each quintile) or quintiles of
population (20% of individuals in each quintile)

¢ Use household sample weight for household quintiles

¢ Create a population weight = household weight * household size to obtain population
quintiles

Calculating quintiles of per capita expenditure

use "household.dta", clear

* To have population (not hhld) quintiles, we use population weight
generate pcexp = tot_exp / hhsize

generate popweight = hhwgt * hhsize

xtile quinpop= pcexp [pweight= popweight], nq(5)

* Check

tab quinpop [aweight = popweight]

5 quantiles

of pcexp Freq. Percent Cum.
1 200.518997 20.05 20.05
2 200.135679 20.01 40.07
3 199.604612 19.96 60.03
L 201.964547 20.20 80.22
5 197.776166 19.78 100.00
Total 1,000 100.00 73

Collapsing variables

» col lapse converts the dataset in memory into a dataset of means,
sums, medians, etc.

collapse clist [if] [in] [weight] [, options]

* Collapsing data files is a very useful tool, which needs to be well
understood

* It will be used for example to produce data files at the household
level out of data files at the individual level

74

Use of the col lapse command: examples

* Calculating household size and max/mean age from demographic data
use "individual.dta”, clear // Data with demographic information
collapse (count) hh_size = sex /// Or any variable with no missing
(mean) mean_age = age /// gl0104 = age in years
(max) max_age = age, by(hhid)

* Producing a file with number of hhlds and population by province

* Sum hhld and population sampling weights, by province

use ""household.dta', clear // A Tile with observations at hhld level
generate popweight = hhwgt * hhsize

collapse (sum) hhwght popweight, by(province)

Note: egen can be used to generate the same variables without generating new files
75

Use of dupl 1cates drop

One way to keep only one observation per group (e.g., per household)
is to use col lapse. Another way is to remove all duplicates of the key
variables using the dupl icates drop command.

duplicates drop varlist [i1f] [in], force

76

Generating dummy variables

¢ Dummy variables are variables with values O (false) and 1 (true). We already saw how to
generate a dummy variable using the generate command, e.g.

¢ The long way:

¢ The short way:

* When you have multiple categories, this method is tedious. You can use the tabulate
command instead. For example:

This will create dummy variables provi, prov2, prov3, ..., provN (one dummy for each province)
» One additional option is to use the XI command (see slides on regression).

Producing tables

Tabulation

* We saw in a previous slide that frequency tables can easily be
produced using the tabulate command (see also tabl and
tab?2).

* For producing multi-dimension tables with summary statistics, we will
use the table commands.

e Stata also provides the command tabstat for producing tables with
summary statistics for a series of numeric variables.

* A user-contributed package (ado file) named tabout complements
the Stata tabulation commands.

A note on copy/pasting tables

* To copy and paste tables from the Stata results window, use the copy
table option, not copy. The formatting of the table will then be
preserved, and cells will be properly distinguished when pasting to
Excel.

Producing tables using command “tabulate”

tabulate produces one-way or two-way tables. It can be used to produce tables showing
frequencies in percentages. tabl and tab2 will produce one-wan and two-way tables for
multiple variables in one batch (tab2 will produce tables for all combinations of the specified

variables).
tabulate varnamel varname2 if In weight , options

Example:

use "individual.dta", clear

tabulate province marital [aweight=hhwgt], row nofreq

tabulate province marital [aweight=hhwgt], column nofreq

tabulate province marital [aweight=hhwgt], cell nofreq

tabl province sex relat marital

tab2 sex relat marital // Produces 3 tables: sex by relat, sex by marital, relat by marital

81

Producing tables using command “table”
table calculates and displays tables of summary statistics.

table rowvar [colvar [supercolvar]] [if] [in] [weight] [, options]

Example:

use "individual.dta”™, clear

table province marital [pweight=hhwgt], row col format(%9.0f)

table province marital [pweight=hhwgt], row col format(%9.0f)

table province marital [pweight=hhwgt], c(mean age) row col format(%9.2f)

82

Producing tables using command “tabstat”

Example: Tables of summary statistics for two variables

use "household.dta, clear
tabstat tot_food tot_exp, by(province) stat(mean sd min max) nototal long

* Put the variables in row and the statistics in column

tabstat tot_food tot_exp, by(province) stat(mean sd min max) nototal col(stat)

province stats tot food tot_exp provinc variable mean sd min max
North mean T71700.21 115795.2 North tot_ food 71700.21 40271.75 9552.185 2329‘?2,.3
sd | 40271.75 83606 tot_exp | 115795.2 83606 18749.05 554781.9
min 9592.185 18749.05
max 232972.3 554781.9 East tot food 56311.03 35104.43 5872.188 221348.2
tnt awvn in117a 2 RTRZ2A 74 1n4aaR R7 GQod4444
East mean 56311.03 101179.2
sd 35104.43 B7828.74 83
Producing tables using package “tabout”
use "'C:\Stata Manual\Data\individual.dta", clear
recode age (0/9=1 "0 - 9 years") (10/19=2 "10 - 19 years') //7/
(20/29 =3 "20 - 29 years') (30/39=4 "30 - 39 years') //7/
(40/49=5 40 - 49 years') (50/59=6 50 - 59 years') ///
(60/69=7 60 - 69 years'™) (70/79=8 "70 - 79 years')
(80/max=9 "'80 and above'), generate(agegroup)
label variable agegroup "Age group"
tabout agegroup urbrur using '"C:\Stata Manual\Data\tablel._xlIs", //7/
c(col) (1) clab(Col_%) npos(col) style(xls) replace
A B C D E
1 Ruralfurban
2 Agegroup Ur:u:- i:lr.: :-:f; N
: 0-9years h“&lg_?‘ 12 205 BOS
5 10-19yea 179 20.1 191 751
6 20-29yea 15 132 14 550
T 30-39yea 169 163 165 651
8 40-49yea 144 11 126 494
©seaves 3 s s
1 70-79yea 22 7 25 as
12 80 and abo 08 1 09 s 84

LE]

Tatal

100

100

100

3926

Producing graphs

85

Graphs

Stata has powerful graph capabilities.

Producing simple charts is very easy. But Stata offers many options that
allows you to generate complex ones, and to customize about every
aspect of your charts. A full manual is dedicated to it.

Tip: Use the menu-driven tools, which will produce the code for you.

We only show here some basic, common commands. Once you master
these commands, read the Stata manual for more. Or visit Stata’s on-
line “Visual overview for creating graphs” at:

http://www.stata.com/support/fags/graphics/gph/stata-graphs/

86

Bar graphs
Bars graphs compare quantities in different categories of a
variable.

graph bar yvars [1f] [in] [weight] [, options]

where yvars is a list of variables.

The command has many options, and also allows to graph summary
statistics of the variables (mean, median, percentiles, min, max, etc.)

87

Bar graphs — An example

Mean per capita consumption by province
use "household.dta, clear

generate pce = tot_exp / hhsize
generate popweight = hgwght * hhsize

graph bar (mean) pce i1f pce <. [pweight = wgtpop],
over(province, label(angle(ninety))) title(""Mean annual per
capita consumption by province'™) note(''Source: Stata exercise
file, 2017")

* Use “hbar” instead of “bar” for horizontal chart

88

mean of pce
10,000 20,000 30,000 40,000
L

0

Bar graphs — An example

Mean annual per capita consumption by province Mean annual per capita consumption by province

West East North

South

t T T T T
0 10,000 20,000 30,000 40,000
mean of pce

North
East
West
South

Source: Stata exercise file, 2017 Source: Stata exercise file, 2017

Same command, but with hbar instead of bar

89

Bar graphs — Another example

Mean and median per capita consumption by State (2 variables)
use "household.dta"™, clear
generate pce = tot_exp / hhsize

graph hbar (mean) pce (median) pce [pweight = wgtpop],
over(province) title(*'Mean and median pce by province'™)
ytitle(""Per capita expenditure') note(''Source: Stata
training data file, 2017") bar(1, color(green)) bar(2,
color(blue))

90

Bar graphs — Another example

Mean and median pce by province

North
East
West

South

T T T T
0 10,000 20,000 30,000 40,000
Per capita expenditure

I meanofpce M p 50 of pce

Source: Stata training data file, 2017

91

Pie charts

* Syntax:
graph pie varlist [if] [in] [weight] [, options]

e Example:
use "individual .dta'", clear

graph pie [pweight = hhwgt], over(marital) plabel(all
percent, color(white) format(%9.1f)) cw by(,
legend(on)) by(province, title(Population by province
and marital status))

92

Pie charts

Population by province and marital status Population by province and marital status

North East
Notice that the title is repeated
on top of each chart; this title
should better be displayed only
once on top of all pies, as it
applies to all.

Population by province and marital status

South
West out This can be done simply by

including the title instruction
within the “by” option. See the
example provided in next slides
for “dot charts”.

I single I Married/consensual union
I Divorced [N widowed

Graphs by Province

93

Line charts

Example:

use "household.dta”™, clear
generate pce = tot _exp / hhsize
cumul pce, gen(cum)

sort cum

line cum pce, ylab(, grid) xlab(, grid) title("Cumulative
distribution of PCE"™)

Note: cumul creates a new variable , defined as the empirical cumulative
distribution function of a numeric variable.

9%

Line charts

Cumulative distribution of PCE

.6
1

ECDF of pce

4
1

T T T T
0 200000 400000 600000 800000
pce

95

Dot charts

use "household.dta™, clear

generate pce = tot_exp / hhsize

recode hhsize (10/max=10), generate(hhsize2)

keep if province == 1 | province == 4 // We keep only two provinces

graph dot (mean) pce (p50) pce [pweight=wgtpop], over(hhsize2)
by(province, title("Mean and median of per capita consumption,'™ "North

and South provinces'™)) // The title is within the “by” option

96

Dot charts

Mean and median of per capita consumption,
North and South provinces

North South

© 00 N O b W NP
, i H

© 00 N O b WN P
4

i
(S}
=
S)

T T T T T T T T T T
0 20,000 40,000 60,000 80,000 100000 0 20,000 40,000 60,000 80,000 100000

® meanofpce @ p50 of pce

Graphs by Province

97

Histograms

use "individual .dta', clear

twoway histogram age, by(province, ///
title('Distribution of age by province™™))

98

Histograms

Distribution of age by province

North East
[s2]
84
N
a4
-
<
2 °1
k%)
= West South
L [s2]
0 o+
o
84
-
o
o 4
T T T T T T
0 50 100 O 50 100
Age in years
Graphs by Province

* The box plot (a.k.a. box and whisker diagram) is a standardized way of
displaying the distribution of data based on the five number
summary: minimum, first quartile, median, third quartile, and
maximum.

* In the simplest box plot the central rectangle spans the first quartile
to the third quartile (the interquartile range or IQR).

* A segment inside the rectangle shows the median and "whiskers"
above and below the box show the locations of the minimum and
maximum.

Box plots — Example from FSM HIES 2013-14

use "household.dta”, clear
generate pce = tot_exp / hhsize
graph box pce, over(province) title("'PCE by province')

graph box pce, over(province) title("PCE by province') nooutsides

Box plots — PCE in FSM, HIES 2013-14

° PCE by province ° PCE by province
8 8 |
3 S
o @©
g g
g g
o
o
88 gsH
Q_gr =4
L] . o
8 . 8]
g1 : ' 8
g ' j | L T T
o
o é é —— ==
North East West South

North East West South excludes outside values

Statistical analysis - Regressions

Regressions in Stata

e Stata provides commands for running many types of regressions
(linear, non-linear, logistic, probit, quantile, etc.)

e The most common types are the linear and the logistic models.

* The linear model used to predict the value of a continuous variable based on
the value of one or more independent variables

* The logistic model used to predict the value of a binary variable (e.g., poor /
non-poor) or a categorical variable with more than 2 categories (multinomial

regression)
* Some specific commands allow taking complex survey designs into
consideration (command svyreqg).

A quick look at the data before regressing:
outliers

Before running a regression, make sure your data do not have outliers,
invalid values, or a large number of missing cases. You can do that by
producing various types of tables and charts. For example, before
regressing the rent on dwelling characteristics, you could produce box
plots of some variables.

use "expenditure.dta', clear Pe
keep if itemcode==44 OK ??ﬂ
graph box cons_purch H

A quick look at the data before regressing:
correlations among variables

You can also look at the correlations of variables that you plan
to use in the regression model, using command correlate

Syntax:

. correlate pce rooms hhsize
. (obs=1,000)
Example: correlation between

per capita expenditure,
number of rooms in the pce 1.0000

. . rooms 0.4460 1.0000
dwelllng' and househOId size hhsize -0.2296 -0.2528 1.0000

| pce rooms hhsize

The linear regression model

e All variables used in the model must be numeric (no string variables).

* The dependent variable must be a real-number variable (a continuous
variable, for example “household income” or “rental value”).

* The independent variables can be continuous or categorical variables.
Prior to being used in a linear regression model, variables can - and in
some cases must - be transformed, e.g.:

* the log value of continuous variables can be used instead of the
original value (for dependent variables and predictors)

e categorical variables used as predictors must be transformed into
dummy variables

Linear regression: regress, predict

* regress performs ordinary least-squares linear regression.

* The syntax is:
regress depvar [indepvars] [if] [in] [weight] [, options]

* Once a model has been fit using the regress command, it can be
applied to data to predict values of the dependent variable using the
predict command. This command will make prediction using the
latest regression model run by Stata.

For a single-equation model, the syntax is:

Creating dummies for categorical variables

* The best option to convert categorical values into dummies is to use
the xi command. The command only requires the choice of a prefix to
indicate the dummy version of the variables to be converted. For
example, to convert variables province and sex into dummies, with

ao:n

prefix “i.”, one would simply type:
Xi.province i.sex
* The xi command and the regression command can conveniently be

combined into a single command, simply by preceding
the regress command with xi as shown in the code example below.

Linear regression model: An example

* In this example we will predict the (log) per capita expenditure (pce)
based on multiple variables:
* Categorical: province, dwelling, water, toilet, wall, roof, floor, electricity, car
* hhsize, rooms

e The distribution of pce is skewed; we will therefore fit a model to
predict its log value, which has a quasi-normal distribution. After we
predict the log(pce), we will convert back to pce values using exp.

8

histogram pce, bin(100) : LOG

gen logpce = log(pce) i : L
histogram logpce, bin(100) ¢

uuuuuuuuuuuuuuuuuuuuuu

Linear regression model: An example

use "C:\Stata_Fiji\Data\household.dta"™, clear

generate pce = tot_exp/hhsize
generate logpce = log(pce)
xi1: regress logpce hhsize rooms
i.province i1.dwelling i1.water i1.toilet

i.wall i.roof i.floor i.electricity i1.car
[weight=hhwgt]

predict pred_logpce
generate pred _pce = exp(pred_logpce)
summarize pce pred_pce

//7/
//7/
//7/

111

Regression results (1/3)

. xi: regress logpce hhsize rooms i
> i.province i.dwelling i.water i.toilet 17
> i.wall i.roof i.floor i.electricity i.car ///
> [weight=hhwgt]
i.province Iprovince 1-4 (naturally coded; Iprovince 1 omitted)
i.dwelling _Idwelling_1-5 (naturally coded; _Idwelling_ 1l omitted)
i.water Iwater 1-5 (naturally coded; Iwater 1 omitted)
i.toilet _Itoilet_1-4 (naturally coded; _Ttoilet 1 omitted)
i.wall Iwall 1-4 (naturally coded; _Iwall 1 omitted)
i.roof _Iroof 1-7 (naturally coded; _Iroof 1 omitted)
i.floor Ifloor _1-6 (naturally coded; Ifloor 1 omitted)
i.electricity _Ielectrici_0-1 (naturally ¢ ; _Ielectrici 0 omitted)
i.car E1-2 (naturally coded; Icar 1 omitted)
(analytic weights assumed)
(sum of wgt is 6.1871e+07)
Source 55 df Ms Number of obs 1,000
F{32, 987} 111.71
Model 350.330071 32 10.9478147 Prob > F 0.0000
Residual 94 .7644786 967 .097998427 E=sqguared 0.7871
t Adj R-squared 0.7800
Total | 445,09455 999 . 44554009 Root MSE .31305

112

Regression results (2/3

Conf.

-.0574735 0067061 -8.57 o.000 =-. 0706396 -.0443193

0114693 0122005 0.94 0.347 =.0124732 .0354118

-.045774 0336565 -1.48 0.13% -.1158221 0162742

.0151265 0341893 0.44 0.658 =.0519673 0822203

L0163434 0374566 0.44 0.663 -. 0571623 .0B3849

=-.5513828 0369208 =14.93 0.000 =.6238369 =.4789287

-. 906243 0574212 -15.78 0.000 =1.018927 -. 7935586

=1.238741 0839349 =14.76 0.000 =1.403457 =1.074026

=1.608476 L116596 =-13.80 0.000 -1.837286 =-1.379665

=.0953891 0358235 =2.66 0.008 =.1656899 =-.0250883

=. 1609466 0286203 =5.62 0.000 -.2171117 =.104T815

=.1803564 0357671 =5.04 0.000 =.2505465 =.1101663

-, 0579707 0630435 =0.84 0.401 =.1934631 0775217

-.0768373 .0331723 =2.32 0.021 =-.1419352 =.0117393

=-.0755131 LOB06584 =1.24 0.213 =.1945503 .0435241

-.0602838 .0284143 -2.12 0.034 =-.1160447 -.0045229

=.0910194 0301748 =3.02 0.003 =.150235 =.0318037

-.0649203 0537421 =-1.21 0.227 =.1703849 .0405443

=.1461342 1098735 =1.33 0.184 =.3617521 0694837

-.1535876 0632853 -2.43 0.015 -.27818 =-.0297953

.0410972 +1108051 0.37 0.711 =.1763489 .2585433

-, 0430029 LOB665 =0.64 0.51% =.1738768 087871

.011435 0711075 0.16 0.872 =-.1281078 +1509777

-.033504 .1165107 =0.29 0.774 - 262147 L18513%

0396472 1047088 0.38 0.705 -.1658354 . 2451298

=.0153205 0419005 =0.37 0.715 =.0975468 0669058

-, 0575531 .0283218 =2.03 0.042 =-,1131324 =-.0019738

-.0473296 0394306 =1.20 0.230 -.124709 0300499

=-.0103842 052756 =0.20 0.844 =,1139136 0931452

-. 0647265 0966009 -0.67 0.503 =-.2542981 +124845

L0256608 0379572 0.68 0.49% -, 0488272 .l001488

-.5110828 0445085 =11.48 0.000 -.5984271 -.4237384

11.45543 L123861 892.81 0.000 11.25236 11.73845

113
Regression results (3/3
summarize pce pred pce

Variable Obs Mean Std. Dev. Min Max
pce 1,000 32678.03 36303.18 4906,748 719784.7
pred pce 1,000 29989.36 16858.07 5151.454 92220.89

114

Logistic regression, a.k.a. logit model

* Logistic regression predicts dichotomous variables, i.e. the dependent
variable is binary (true/false, yes/no, poor/non-poor, etc.)

 Alternative: probit regression

» Two commands in Stata: logit and logistic (same, except that
logistic displays estimates as odds ratios)
* Syntax (see Stata help for detail on options):
logit depvar [indepvars] [if] [in] [weight] [, options]
or
logistic depvar indepvars [if] [in] [weight] [, options]

115

Logistic regression model: An example

* We predict the poverty status of the households based on a few variables
use "C:\Stata_Fiji\Data\household.dta™, clear
generate pce = tot_exp / hhsize

* We create a variable poor (1) — non poor (0) using a poverty line = 18000
generate poor = pce < 18000
xi: logit poor hhsize rooms i.province i.water i.toilet ///

i.wall i.electricity i.car [pweight=hhwgt]

predict poor_pred // We apply the logistic regression model

gen poor2 = poor_pred > 0.5 // ITf probability > 0.5 - poor, otherwise not
table poor poor2 // Show the confusion matrix

116

Logistic regression model: the results

.1797348
-2.979132
-.2224959

.6037842

.3209073

.3758244

.9404626

.B681463

2.444589

~-.454596

1.356786

.0570307

.0071212

o

0
-.3253506
2.791787
7.792916

.1202888
. 4928465
.4177789
.4694361
. 4439666
. 6487015
.4929785
- 6209504
1.008224

.473035
. 7592227
. 4177907
.3788574
{on 1)
(on d
.4432731
. 7160761
2.039737

coo

o000 O0O0COOCOOOO0O

.135
.000
.594
.198
470
.562
-056

162

.015
.337
074
891
.985

-463
.000
-000

-.056027
-3.945093
-1.041327
-.3162936
.5492513
-.B956073
.0257575
.3488942
.46B5063
-1.381728
-.1312629

-.761824
=-.7354257

-1.19415
1.388304
3.795106

944
60.71
0.0000
0.7783

Interval]

.4154966
-2.01317
.5963357
1.523862
1.191066
1.647256
1.906683
2.085187
4.420671
.4725355
2.844835
.B758855
. 7496681

.5434488
4.195271
11.7%073

Confusion matrix:

poor?2
poor 0 1
0 656 31
1 26 287

Note: the proper way of testing
a regression model and to avoid
overfitting is to measure its “out
of sample” performance by
creating a training set and a test
set.

117

Programming in Stata

118

Programming

* Including comments in your programs is crucial !

* Commands can be used to describe the program, explain the purpose
of some components, etc.

* There are four ways to include comments in a do-file.
* Begin the line with a * *’; Stata ignores such lines.
* Place the commentin /* ... */ delimiters.
* Place the comment after two forward slashes, that is, //. Everything after the
// to the end of the current line is considered a comment.
* Place the comment after three forward slashes, that is, ///. Everything after
the /// to the end of the current line is considered a comment.

Header

* It is highly recommended to include a header (as “comment”) in all
your programs, which describes the author, purpose, date, necessary
input, and outputs of the program.

* Example:

* Stata program for poverty analysis using test dataset
* Author: Olivier Dupriez, World Bank

* Date: ..

* Input files : .

version, and set more off

* The first commands that you will include in your programs
will often be version and set more off

e version indicates which version of Stata you are writing
the program for (Stata evolves, and some commands can
change)

e set more OfF isa parameter that controls the display of
the results

e Example:
version 14
set more off

Logging the output

* In some cases, you may want to produce a log of the results.
* The log can be produced as a text file, or as a formatted Stata file.

* You have to provide in your program the filename and location
where the log will be saved.

At the beginning of your program, you will “open” the log file. You
will close it at the end (note: you can set the log on and off within
programs if you do not want to log all results).

* You can only have one log file open at a time.
* You can replace the content of an existing log file, or append to it.

Logging the output — Syntax and example

* Syntax to open a log:
log using filename [, append replace [text]smcl] name(logname)]

e Example:
log using "C:/STATA_TRAINING/Exercise_0l.txt", replace text

* Syntax to close a log:
log close

* Syntax to temporarily suspend logging or resume logging:
log [off]on]

123

Long commands — The continuation line

* Some of your commands will be too long to fit on one line

By default, Stata considers that each line contains one
command

e If a command is provided on more than one line, you need to
inform Stata about it. This can be done by:

* Using a special character to inform Stata where the end of the
command is #del imit (return to default by using #delimit cr)

» Typing /// at the end of each line (except the last)

124

Long commands — Example

#delimit ;

recode province (17=13)(5=14)(11=15)(16=16)(7=17)
(12=18)(3=1) (6=2) (4=3) (2=4) (14=5) (13=6) (10=7) (1=8) (8=9)
(15=11)(9=12), gen(prov) ;

#delimit cr

OR
recode province (17=13)(5=14)(11=15)(16=16)(7=17) ///

(12=18)(3=1)(6=2) (4=3) (2=4) (14=5) (13=6) (10=7)(1=8)(8=9) ///
(15=11)(9=12), gen(prov)

Record number and number of records

e Stata has two macro variables that you can use any time in your
programs

* Oneis named _N and indicates the total number of
observations in the file

* The other one indicates the sequential number of each
observation in the data file and is named _n

Macros

* In many Stata programs, you will make use of macro variables.
These are variables that are not saved in data files, but are
available for use during the execution of your programs.

* Macros can be local (in which case they only exist within a
specific do file) or global (in which case they can be used across
programs).

* You create a macro variable simply by declaring its type and
giving it a value (numeric or string), e.g.,

elocal 1 =1
* global myfolder = "C:\Stata_Fiji"

127

Macros

* Once a macro has been created and contains some value or text,
you can use it in your programs.
 To refer to a local variables ina program, put the name of the

macro between quotes as follows ‘macroname’ . For global
macros, put the character S before the name (e.g., Smacroname)

e Example:
local i = 10
display "The value of my local macro is " i’

global myfolder = "C:\Stata Fiji"
display "The content of my global macro is " $myfolder

128

Temporary files

* In some programs, you may want to generate data files that are needed only for the
execution of that program. You can create such temporary files using the tempfile
command. Temporary files are automatically erased at completion of the program’s
execution.

* You can create multiple temporary files in a program.
* You create them by giving them a name before putting content in them.
Example: to create 2 temporary files named t0 and t1, type: tempfile t0 tl
¢ The command tempfile can be put anywhere in your program.
* To refer to a tempfile, enclose its name into single quotes (like local macros).

Example: save “t0’, replace

Temporary variables

* You can also generate temporary variables (the same way you can create
temporary data files) in your Stata programs. These variables are not
saved; they will automatically be dropped at the end of the program
execution.

* You initiate the temporary variables using the command tempvar. For
example: tempvar tvl tv2 tv3

* In your program, you refer to these variables by enclosing them in quotes
like you would do with a local macro. For example:
gen "tvl’ = income * 12

Stored results

¢ Commands that return an output often store results in memory, which can be used in programs

» For example, in addition to displaying summary statistics on screen, the command summarize
stores the following results

r{N) number of observations r{pl) 1st percentile (detail only)
r(mean) mean r(p5) 5th percentile (detail only)
r(skewness) skewness (detail only) r{p1@) 10th percentile (detail only)
r{min) minimum r(p25) 25th percentile (detail only)
r(max) max imum r{pse) 5@th percentile (detail only)
r{sum_w) sum of the weights r(p75) 75th percentile (detail only)
r{Var) variance r{p9e) 98th percentile (detail only)
r(kurtosis) kurtosis (detail only) r(p95) 95th percentile (detail only)
r(sum) sum of variable r(p99) 99th percentile (detail only)
r(sd) standard deviation

* The command mean stores results in various e() macros/scalars/matrices (see help of mean
command)

* Note: some packages (e.g., poverty) store results in global macro variables.

131

Use of stored results: An example

e Commands that return an output often store results in memory,
which can be used in programs

e See the command’s help for a list of stored results (when available)

* For example, in addition to displaying summary statistics on screen,
the command summarize stores the following results

r{N) number of observations r(pl) 1st percentile (detail only)
r(mean) mean r(ps) 5th percentile (detail only)
r(skewness) skewness (detail only) r(ple) 10th percentile (detail only)
r{min} minimum r(p25) 25th percentile (detail only)
r(max) maximum r(pse) 50th percentile (detail only)
r(sum_w) sum of the weights r(p75) 75th percentile (detail only)
r{Var) variance r{p9e) 98th percentile (detail only)
r(kurtosis) kurtosis (detail only) r(p95) 95th percentile (detail only)
r(sum) sum of variable r(p99) 99th percentile (detail only)

r(sd) standard deviation

132

The display command

» display displays strings and values of scalar expressions. It
produces output from the programs that you write. It can be used for
example to display a result of a command, or the value of a macro.

* Example 1:
summarize hhsize

display "Variable hhsize has a mean of " r(mean) " and a max of " r(max)

e Example 2:
display "Today is the: " c(current_date)

Loops

e Many programs will contain commands or sets of commands
that need to be repeated (e.g., you may need to calculate values
for each year in a range of years).

* Stata provides various methods for looping or repeating
commands in a do-file.

* Depending on the purpose of the loop, you may want to chose
one of the methods over another one (in some cases, more than
one method may achieve the same result, but one may be more
“elegant” or efficient than another one).

Loops using “while”

* A first option to create a loop in a do-file is to use the whi le
command.

e Stata will repeat the commands specified in the loop as long as
the whi e condition is met.

* Typically, this will be used when the set of commands must be
repeated a fixed number of times (e.g. 5 loops).

Loops using “while” - Example

We run a command displaying the value of calendar year, from 2000 to
2020, by increment of 5.

Loops using “forvalues”

4

Another way of achieving a loop through numeric values is top use “forvalues”.
forvalues Iname = range {
commands referring to "Iname*

}
where range is

* #1(#d)#2 meaning #1 to #2 in steps of #d

o H#1/#2 meaning #1 to #2 in steps of 1

* #1 #t to #2 meaning #1 to #2 in steps of #t - #1

e #1 #t: #2 meaning #1 to #2 in steps of #t - #1

137

Loops using “foreach”

foreach is used in conjunction with strings.
foreach country in KIR FSM FJI {
display "The selected country is " " country™"

}

This command can be used with variable names, numbers, or any string of
text.

138

Loops using “levelsof”

* levelsof displays a sorted list of the distinct values of a categorical
variable. Using this command, you can generate a macro containing a
list of these values, and use this list to loop through the values.

* Example:

levelsof ethnicgrp, local(ethnic)

foreach 1 of local ethnic {

. some commands to be run for each value of ethnic

139

Branching

We may want to execute some commands when a particular condition is met, and
another set of commands when the condition is not met. This is done by
“branching” using the “1¥” and “el se” commands. The implementation in Stata is

as follows:
if [condition] {
. execute these commands ..

else {
. execute these other commands ..
s

Notice the use of curly brackets { and }. The set of commands to be implemented
under each condition must be listed in their own set of brackets.

140

Preserving and restoring data in memory

* preserve and restore deal with the programming problem where the user’s data must be
changed to achieve the desired result but, when the program concludes, the programmer wishes to
undo the damage done to the data.

* When preserve is issued, the user’s data are preserved. The data in memory remain unchanged.
When the program or do-file concludes, the user’s data are automatically restored.

» After a preserve, the programmer can also instruct Stata to restore the data now with the
restore command. This is useful when the programmer needs the original data back and knows that
no more damage will be done to the data.

* restore, preserve can be used when the programmer needs the data back but plans further
damage. restore, not can be used when the programmer wishes to cancel the previous
preserve and to have the data currently in memory returned to the user.

(Description extracted from the Stata manual)

Quietly or noisily executing commands

In some cases, you may want to run a command but not show the
terminal output. This can be done using the quietly command.
Syntax:
Example:

- No output is presented, but the e() results are available.

Note: You can combine quietly with { } to quietly run a block of
commands (and use noisily to make a command within this block
run non-quietly if needed).

Debugging a program

Your program may crash out half-way through for some reason. For
example, if you are trying to create a new variable called age but there is
already a variable named age.

use "individual.dta"™, clear

generate age = 10

variable age already defined
When the program is simple, detecting the cause of the problem is easy.
With complex programs, it is not always so obvious. The set trace

command, which traces the execution of the program line-by-line, may
help identify the problem.

143

Working with CSV and Excel files

144

Importing data from a CSV file

Use import delimited to import data from a CSV file. You have the
option to treat the first row of CSV data as Stata variable names, and to
select a specific range of rows/columns.

Syntax: import delimited [varlist] filename [, options]

Example:

* Importing a CSV file, where the first row contains variable names
import delimited "household.csv', clear

* We do the same, but for a selection of columns and rows of the CSV file
* (we keep the First 5 variables, and the top 50 observations)

import delimited "household.csv', rowrange(1:50) colrange(1:5) clear

145

Importing data from an Excel worksheet

Use Import excel to import any worksheet (or a custom cell range) from
an XLS or XLSX file. You have the option to treat the first row of Excel data as
Stata variable names.

Syntax:
import excel [using] filename [, import_excel options]

Example: import excel "household.csv', clear

(see Stata manual for more options)

146

Reading specific cells from an Excel worksheet

You can read specific cells from an Excel worksheet and save the values
as macro variables for use in Stata programs. For example:

import excel using "C:\poverty_ lines._xIsx", cellrange(B1:C1) clear
local ctry = B
C

local year

Saving a Stata data file in Excel format

Use export excel to save your Stata data file (all variables or a subset) in
an Excel sheet. You have the option to replace an entire workbook, or to save
the data as a new worksheet in an existing workbook. You can save the Stata
variable names or variable labels as first row of the worksheet. You can
chose to export the values or the corresponding value labels.

Syntax:

or (to export only a subset of variables)

Saving values in Excel sheets

To save the results of Stata calculations in specific cells of an Excel file, you
will use putexcel. The command putexcel set indicates the Excel file
to be used and some formatting options. The command putexcel writes
values (from a Stata macro or matrix) in the Excel file.

For example:

putexcel
putexcel
putexcel
putexcel
putexcel

set "poverty lines", sheet("'Sheetl') modify keepcellformat

B27
F13
F14
K20

matrix(Wl) // B27 = top right corner of matrix
("'$S_DATE™)

C'$S_TIME™)

(poverty_headcount®)

Interacting with Excel: an example

In this example, we will extract the value of various poverty lines from
an Excel sheet, use these poverty lines to calculate poverty indicators,
and save selected poverty indicators back in the XLSX file.

Note 1: to run the example shown in the next slide, the package
poverty must have been installed (ssc 1nstall poverty).

Note 2: the package poverty saves the various results it produces in
global macros named S_1to S 27 (see package help file). Global
macros are referred to as SS_1 to $S_27 in Stata programs.

Interacting with Excel: an example

* We read values of poverty lines in Excel, calculate poverty in Stata, and save results in Excel.
set more off

cd "C:\Stata_Fiji\Data"

local myXLS = "Test_poverty_lines.xlIsx" // Excel file containing poverty lines

putexcel set "“myXLS"", modify // Will save results in that same file

forvalues i = 10(1)18 { // Poverty lines are stored in cells B10 to B18
import excel using ""myXLS"", cellrange(B~i") clear // Read poverty line value
local pline = B // Store it in a macro
use "household.dta”, clear
gen pce = tot_exp/ hhsize
poverty pce [aweight = wgtpop], line(Cpline") all // Calculate poverty indic.

putexcel CTi" = ($S_6) // Package poverty saves output in global macros
putexcel D7i" = ($S_8) // We save two of the results in Excel (cols C and D)
}
putexcel C6 = ('$S_DATE™) // We save the date in cell C6

151

Interacting with the Operating
System

152

Interaction with the operating system

In some programs, you may want to execute some commands from the

operating command prompt, for example to erase a file or to obtain a
list of files in a directory.

You can execute such commands py preceding them with a !

Examples:
Idir C:\FSM
lerase "C:\FSM\temporary_ file.dta"

Specific commands for survey
data tabulation and analysis

Some example of sample designs

e

als
ot
"l.-‘

Source: Jeff Pitblado, Associate Director, Statistical Software at StataCorp LP. 2009 Canadian Stata Users 155

Group Meeting. Available at http://www.stata.com/meeting/canada09/ca09_pitblado_handout.pdf

Defining the survey design

* Sample design can affect the standard errors from results of statistical
analyses. Analysis must take survey design features into account.

* To do so, we must issue the svyset command to tell Stata about the
sample design. You use svyset to designate variables that contain
information about the survey design, such as the sampling units and
weights.

* Once this command has been issued, you can use the sSvy : prefix
before each command.

156

Defining the survey design - Syntax

* For single-stage design:
svyset [psu] [weight] [, design_options options]

* For multiple-stage design
svyset psu [weight] [, design_options] [|] ssu , design_options] ... [options]

Using svy: commands

» After svyset, you can use many commands with prefix svy: and
you will get more accurate results.

* Some commands that can use Svy:
* Descriptive statistics: mean
* Estimate means proportion: proportion
* Estimate proportions ratio: ratio
* Estimate ratios total: total
* Linear regression: regress

Importing data from CsPro

To export a CsPro dataset to Stata

* Create a new folder in which you will
save the exported materials

* Open the CsPro data dictionary
corresponding to the file to be exported,
then select Tools > Export Data.

—> The Export dialog box will be opened
- Enter the options as shown in the next slide

- CsPro will generate a collection of files (to be
saved in the new folder). These files contain
the materials needed to produce the Stata data
files (not yet the Stata data files themselves).

- You will have to run all [.do] files to produce
the data files in Stata format, and save them.

The export options in CsPro

* Select the options as follows: Export Format
Number of Files Created (" Tab delimited (.txt
(" One File " Comma delimited (.csv)
(¢ Multiple Files (one for each record type " Semicolon delimited (CSV)
Output of Multiple Record Occurrences (" CSPro (.dat, .dcf)
" Allin One Record (" SPSS (.dat, .sps)
(& As Separate Records 1 " SAS (dat sas)
Export Record Type Export Items or Subitems {# Stata (.dat, .dct, .do)
* No (" Items Only
(" R (.dat, .R
(" Before Id Items (" Subitems Only (.dat, .R)
" After Id Items (s Both Items and Subitems o SPSS, SAS, Stata, and R

161

CsPro export to Stata

» CsPro export to Stata will generate, for each record type in the CsPro
dictionary:
* One do file (extension DO)
e One dictionary file (extension DCT)
* One data file (extension DAT)

* CsPro does not generate the Stata data files; it generates the
materials needed to produce the Stata data files.

* This can involve executing many do files (one per record type).

* They can be run one by one, or a do file can be produced to run them
in one batch

162

Executing the do files one by one

* For each record type in the CsPro data dictionary, CsPro will have
produce a DAT file (an ASCII fixed-format file containing the data for
each specific record type), a DCT file that contains the information on
the position of each variable in the DAT file and the variable and value
labels, and a DO file that applies the DCT information to the DAT file.

* For each do file, you will have to run (in Stata) the following code:
clear
do filename.DO
compress
save "filename.dta"™, replace

163

Executing all do files in a batch using a do file

clear *
set more off
cd "C:\FSM_HIES_2013\CsPro™ // Where the CsPro export files (DCT, DAT, DO) are stored

local outdir = "C:\FSM_HIES_2013\Stata" // Where we will save the Stata data files

capture l!erase listDCT.txt // Delete the list of CsPro .DCT files if it exists
Idir *.dct /B -> listDCT.txt // Create a text file containing the list of CsPro .DCT files

file open Recs using listDCT.txt, read // Open that text file containing the list of files
file read Recs line

while r(eof)==0 { // We will read the lines one by one, until we reach the end of file (eof)
local filenm = substr(*" " line*",1,length(*" " line""")-4) // Remove “.DCT” to keep only the file name
clear
do "“filenm”.do* // Run the do file (convert data from ASCII to Stata, and add labels)
compress
save "outdir*/ filenm®.dta", replace
file read Recs line // 1T not last line of the text file, read next line

¥

file close Recs // Job completed; we can close the text file

164

