Developing estimates of depletion for the UK natural capital accounts

Sonia Carrera & Alec Jacobs

Natural Capital Accounts
Environment Division
natural.capital.team@ons.gov.uk

22 July 2025

UK natural capital accounts

- Physical and monetary estimates of services provided by the UK's natural capital
- Generated £87 billion annual value in 2022, worth £1.8 trillion in asset value
- 16 ecosystem services: provisioning, regulating and cultural

Informed by the SEEA Ecosystem Accounting

Carbon storage
All woodland
213 MILLION

77 MILLION

What is depletion?

Depletion, in physical terms, is the decrease in the stock of a natural resource, due to extraction occurring at a level greater than that of regeneration

Degradation considers changes in the capacity of environmental assets to deliver a broad range of ecosystem services and the extent to which this capacity may be reduced through the action of economic units

Depletion can be considered a specific form of degradation

Why measure it?

- SEEA account
- SNA 2025 revision
- Better "<u>net adjusted</u>" economic metrics (Net Domestic Product)
- Comprehensive income and wealth accounting "<u>Beyond</u>
 GDP"
- Indicators and costs in sustainability

Why measure it – GDP vs NDP

Two (example countries) – A & B

Country A – highly dependent on industries which deplete natural resources.

Significant divergence between GDP and NDP

Country B – less dependent on depletion activities

NDP tracks GDP

Country A has greater limitations on future GDP growth?

What we have done to date at the ONS

- Experimental measures
 of depletion for oil, gas,
 minerals and coal (the
 focus of this webinar)
- Experimental measures of inclusive income and wealth

Depletion - Theory

Depletion - physical

- Extraction, harvesting or production by human agents
- Only occurs when it is greater than population growth or regeneration (renewables)
- One of several factors that can lead to a changes in stock (reappraisals, new discoveries etc.)
- Depletion flows vs stock volumes

Resource rents

- Main monetary valuation technique for provisioning services
- Estimates the value of the input of the natural service
- Flow values projected forwards to derive the asset value

Equals Gross operating surplus—for the derivation of resource rent

Less User costs of produced assets

Consumption of fixed capital (depreciation) + return to produced assets

Equals Resource rent

Depletion + net return to environmental assets^b

Depletion - monetary

Price in situ – the value of reserves 'in the ground':

$$Price in situ = \frac{Asset value}{Physical reserves}$$

- Unit price for each reserve assumes production is subject to average prices and produced across an average production profile (proportionally)
- In contrast to the resource rent which only considers the economic circumstances with the accounting period (depletion value NOT equal to annual value)

Depletion - monetary

 $Monetary\ depletion = price\ in\ situ\ imes\ physical\ depletion$

- Depletion therefore represents the opportunity cost the income foregone by extracting now rather than in the future
- Sensitive to changes in assumptions you make about changes in prices, production profile, discounting rate etc. (asset value)

Other changes in stock

Other changes in stock

- Catchall term to encompass the net effect of new discoveries, reappraisals, reclassifications, normal and catastrophic losses and regeneration (renewables)
- Derived due to data limitations
- Stock can increase despite depletion
- Monetary other changes in stock = price in situ × physical other changes in stock

Price effect

Price effect

- Asset value can change dramatically across time even if the physical stock remains the same
- Arises due to the change in the resource rents (e.g. industry profitability)
 over time

$$\Delta V_t = (V_t - V_{t-1}) = P_{t-1} \Delta X_t + X_t \Delta P_t$$

Results

Coal

Coal

- Marked decline in coal depletion, drop of 96% since 2009
- Other changes in stock added 390 mtoe between 2009 and 2022
- Reserves increased by 12% between 2009 and 2022

No monetary estimates available

Minerals and metals

Minerals and metals

- Peak production in 2008 at 261 million tonnes
- Declined by 19% in 2009
- Ranged between 190 and 218 million tonnes between 2009 and 2021

No monetary estimates available

Oil and gas

Oil - physical

- Depletion consistently above 100 mtoe between 1982 – 2004. Peaking in 1999 at 150 mtoe. Has since declined to 41 mtoe in 2022
- Other changes in stock are positive in 80% of years and added 3,967 to reserves over time series
- Depletion > other changes in stock in 61% of years, causing reserves to decline
- Reserves declined to 1,014 mtoe in 2022, a 38% reduction since 1987
- Results for gas follow a similar trend

Oil - monetary

- Depletion rose from £3.5 billion in 1999 to its peak in 2008 at £9.8 billion, before diminishing to £2.5 billion in 2021.
- Other changes in stock added £137.1 billion to the asset value over the time series.
- The price effect is volatile but positive in most years, and between 1999 and 2021, added £46.4 billion to the value of the asset.
- Positive correlation of 0.3 between physical and monetary depletion
- Results for gas follow a similar trend

Monetary depletion – Oil & gas

Three factors which explain the change in the asset value year on year. On average:

- Depletion 34%
- Other changes in stock 22%
- Price effect 44%

Monetary depletion – Oil & gas

- Depletion adjusted annual value is lower by £4.8 billion on average over time series
- Several years where results are negative
- Happens when annual value falls faster than the price in situ
- Results can also be netted off against industry gross value added and GDP

Conclusions

Compilation challenges

- Data availability need for complete reserve data; lack of data on production costs of oil and gas
- Valuation method Negative data for coal provisioning
- We'll need to develop complex models of biological growth rates for renewables

Possible future developments

- Monetary values for coal, mineral and metals
- Renewables energy, timber and fish
- Productionise from experimental estimates to official statistics
- More depletion for more ecosystem services
- Degradation linking condition to declining productivity
- Whose depletion? Assigning the value of depletion out to actors (industry vs government)