APPROACHES FOR SUSTAINABLE AGRICULTURAL PRODUCTION SYSTEMS

AGUS PAKPAHAN CENTER FOR SOCIO-ECONOMICS AND AGRICULTURAL POLICY RESEARCH BOGOR, 26 NOVEMBER 2014

What is...

- AGRICULTURE
 - ORIGIN AND EVOLUTION OF AGRICULTURE
 - EVOLUTIONARY PROCESS SINCE STONE AGE UP TO NOW
 - Subsistence vs. Commercial Agric.
 - WHERE DO WE GO?
 - AGRICULTURE IN ARCHIPELAGO AND IN MASSIVE CONTINENT
 - ARCHIPELAGO
 - TROPICAL ARCHIPELAGO
 - TEMPERATE CLIMATE ARCHIPELAGO
 - CONTINENTAL STRUCTURE OF AGRICULTURE
- SUSTAINABILITY
 - STRONG SUSTAINABILITY
 - WEAK SUSTAINABILITY
- SUSTAINABLE
 - GROWTH
 - DEVELOPMENT
 - EQUALITY
- SUSTAINABLE DEVELOPMENT
 - NORMATIVE POINT OF VIEW

- EVOLUTIONARY POINT OF VIEW
- ENTROPY

LESSONS FROM THE PAST: TWO DIFFERENT THEORETICAL PERSPECTIVES

Characteristic features	Rational choice	Evolutionary
Perspective (time horizon)	Short-term	Long-term
Focus of explanation	Decisions, equilibrium	Institutions, transitions
Choice process	Rational maximization	Trial and error search and selection
Ends-means schema	Given constraints and preferences, choice of means	Both constraints and preferences are variable

KONDRATIEF LONG TERM CYCLE

About	K-waves (global leading sectors)	Long cycles
		(world powers after 1500)
930	K1 Printing and paper	LC1 Northern Sung
990	K2 National market	
1060	K3 Fiscal framework	LC2 Southern Sung
1120	K4 Maritime trade	
1190	K5 Champagne Fair	LC3 Genoa
1250	K6 Black Sea trade	
1300	K7 Galley fleets	LC4 Venice
1360	K8 Pepper	
1430	K9 Guinea gold	LC5 Portugal
1492	K10 Indian spices	
1540	K11 Atlantic, Baltic	LC6 Dutch Republic
1580	K12 Asian trade (VOC)	
1640	K13 Amerasian trade	LC8 Britain I
1688	K14 Amerasian trade	
1740	K15 Cotton, iron	LC9 Britain II
1792	K16 Steam, rail	
1850	K17 Electrics, chemicals, steel	LC10 United States
1914	K18 Autos, air, electronics	
1972	149 Information industries	

TECHNOLOGY EVOLUTION

Countries with Greatest Number of Active iOS & Android Devices (millions)

G FLURRY

Source: Flurry Analytics, Active Devices during October 2012

SUGAR WORLD PRICE: AS AN EXAMPLE OF WHAT WRONG WITH OUR POLICIES

ActualPreviousHighestLowestDatesUnitFrequency16.2716.3365.201.251912
-
2014Cents/
IbDaily
IbDaily
Ib

http://www.tradingeconomics.com/commodity/sugar

WILL WE HAVE SUSTAINABLE AGRICULTURE WITH DECLINING PRICE?

http://www.tradingeconomics.com/co mmodity/sugar

INDONESIAN POPULATION GROWTH

* Including Hong Kong, Malaysia, Singapore, South Korea and Thailand Source: United Nations

ECONOMIC STRUCTURE TRANSFORMATION 1990–2012

INDONESIA'S RICE SELF SUFFICIENCY IN 1984, AFTER ABOUT 15 YEARS OF DEVELOPMENT

MACROECONOMIC ENVIRONMENT: International Balance of Payments

(MILLION US\$)

Year		Curi	rent Accou	nt		Capital Account		
	Tra	ade Accou	int		Total	Private	Public	Total
	Export (X)	Import (M)	X-M (Trade account balance)	Service Account Balance		Sector	Sector	
1971	1307	1225	81	-511	-430	156	285	441
1980	22609	13456	9153	-6399	2754	-630	2204	1574
1990	26807	21455	5352	-8592	-3240	4113	633	4746
2000	65408	40367	25041	-17043	7998	-9992	3217	-6775

Rate of Economic Structural Change in Indonesia, Thailand, Malaysia and South Korea 1957-2002

Change 1957-2002	Indonesia	Thailand	Malaysia	South Korea
(1) % of Agric. Labor	17	32	37	58
(2) % of Agr. GDP	39	29	36	37
Rate of change of (1): (2)	0.43	1.1	1.02	1.56

INCOME PER CAPITA OF SELECTED ASIAN COUNTRIES

Country	1820	1870	1930	1950	1970	2000
Burma	504	504	902	396	646	1353
Cina	600	530	567	439	783	3425
Indonesia	612	654	1164	840	1194	3203
Jepang	669	737	1850	1921	9714	21069
Korea	600	604	1020	770	1954	14243
Malaysia	605	663	1636	1559	2079	7872
Filipina	704	776	1476	1070	1764	2385
Singapura	615	682	1279	2219	4439	22207
Taiwan	499	550	1099	924	2980	16642
Thailand	646	712	793	817	1694	6336
Vietnam	527	505	724	658	735	1790

HOW IMPORTANT OF AGRICULTURE IS REFLECTED BY ITS ARDI

	Table 1	Changes in ARDI in	40 countries from 1980	to 2004	
Year	1980	1990	2000	2003	2004
USA	0.3725	0.4517	0.6582	0.7203	0.7606
France	0.3437	0.4628	0.7456	0.7778	0.9107
UK	0.4383	0.5405	0.5122	0.5159	0.6655
Australia	0.5660	0.6283	0.7418	0.9188	0.9338
New Zealand	0.6313	0.8394	0.9468	0.9973	1.0265
Japan	0.2864	0.3140	0.3545	0.4016	0.4265
South Korea	0.3684	0.4103	0.4990	0.4725	0.5451
Spain	0.2141	0.3252	0.4452	0.4783	0.5657
Norway	0.2782	0.3139	0.3764	0.3756	0.4885
Sweden	0.3108	0.4306	0.4867	0.5418	0.5816
Israel	0.4543	0.6771	1.0378	1.1772	1.2246

ARDI = AGRICULTURAL RELATIVE DEVELOPMENT INDEX

..... ARDI

Indonesia

Ghana

India

Pakistan

Vietnamese

Laos

Yemen

Rwanda

Nepal

0.4634	0.3777	0.3574	0.3654	0.3675
0.7789	0.6889	0.6424	0.6436	0.6389
0.5709	0.5094	0.4251	0.3912	0.3732
0.4326	0.4168	0.4689	0.4554	0.4421
0.5464	0.4718	0.3620	0.3345	0.3181
0.7789	0.6889	0.6424	0.6436	0.6389
0.3667	0.2342	0.2797	0.3102	0.3233
0.3997	0.3514	0.4547	0.4675	0.4494
0.5398	0.5172	0.4127	0.4210	0.4095

 $R = \frac{G_1 / L_1}{G_2 / L_2}$

R = ARDI

G is gross domestic product

1 refers for agriculture

2 refers for national economy

GLOBAL HUNGER INDEX(GHI), 10 LOWEST GHI DEVELOPING COUNTRIES INDEX

Country	1990	1995	2000	2005	2013
Albania	9.2	6.0	7.8	6.1	5.2
Mauritius	8.5	7.6	6.5	5.9	5.2
Uzbekistan	_	8.3	9.3	6.6	5.3
Panama	11.6	10.8	11.4	9.0	5.4
South Africa	7.2	6.5	7.4	7.7	5.4
China	13.0	10.4	8.4	6.7	5.5
Malaysia	9.5	7.1	6.9	5.8	5.5
Peru	16.3	12.3	10.5	9.9	5.5
Thailand	21.3	17.1	10.2	6.6	5.8
Colombia	10.4	8.0	6.8	6.9	5.9
	Country Albania Mauritius Uzbekistan Panama South Africa China Malaysia Peru Thailand Colombia	Country1990Albania9.2Mauritius8.5Uzbekistan-Panama11.6South Africa7.2China13.0Malaysia9.5Peru16.3Thailand21.3Colombia10.4	Country19901995Albania9.26.0Mauritius8.57.6Uzbekistan-8.3Panama11.610.8South Africa7.26.5China13.010.4Malaysia9.57.1Peru16.312.3Thailand21.317.1Colombia10.48.0	Country199019952000Albania9.26.07.8Mauritius8.57.66.5Uzbekistan-8.39.3Panama11.610.811.4South Africa7.26.57.4China13.010.48.4Malaysia9.57.16.9Peru16.312.310.5Thailand21.317.110.2Colombia10.48.06.8	Country1990199520002005Albania9.26.07.86.1Mauritius8.57.66.55.9Uzbekistan-8.39.36.6Panama11.610.811.49.0South Africa7.26.57.47.7China13.010.48.46.7Malaysia9.57.16.95.8Peru16.312.310.59.9Thailand21.317.110.26.6Colombia10.48.06.86.9

Source: International Food Policy Research Institute (IFPRI, 2013)

Position of Indonesia's GHI

		1990	1996	2000	2005	2013
20	Moldova	_	7.7	8.8	7.3	9.2
21	Georgia -	16.6	9.2	11.3	9.3	
22	Nicaragua	24.1	19.9	15.4	11.5	9.5
23	Indonesia	19.7	16.9	15.5	14.6	10.1
23	Paraguay	9.3	7.5	6.5	6.3	10.1
25	Mongolia	19.7	23.6	18.5	14.1	10.8
26	Bolivia	18.8	16.9	14.2	13.8	11.2
27	Lesotho	13.2	14.6	14.6	14.9	12.9
28	Mauritania	22.7	16.2	17.2	14.6	13.2
28	Philippines	19.9	17.4	17.7	14.0	13.2
30	Benin	22.5	20.5	17.3	15.2	13.3

Source: International Food Policy Research Institute (IFPRI, 2013)

Food security

Rankings by income classification

(Income groups are World Bank classifications, as of July 1st 2013)

Rank	Sco	re/100		Rank	Scol	re/100	Rank	Scor	e/100	
				Lower middle income (US\$1,036-4,085 per capita)			Low 1	Low income		
High	Income			1	Ukraine	56.4	(1150)	(IIS\$1.035 per capita or less)		
(US\$:	12,616 per capita or	more)		2	Paraguay	53.1	1004.	(03\$1,035 per capita or tess)		
1.1		1		3	Sri Lanka	51.7	1	Uganda	45.6	
1	United States	80.3		4	Bolivia	50.6	-	oganoa	40.0	
-	officed States	05.5		=5	Honduras	50.1	2	Kenya	40.1	
2	Austria	85.5		=5	Morocco	50.1	-	Tatilitation	20.7	
	r salar na			7	Philippines	49.4	3	Tajikistan	38.7	
=3	Netherlands	84.4		8	Egypt	49.3	4	Benin	38.4	
_				9	Vietnam	49.1	_			
=3	Norway	84.4		10	El Salvador	48.8	5	Nepal	37.7	
				11	India	48.3	6	Myanmar	37.6	
5	Singapore	84.3		12	Guatemala	46.9	•	riyannar	27.14	
				13	Indonesia 🔆	46.5	7	Bangladesh	36.3	

CORE LESSONS FROM OUR PAST

- GREEN REVOLUTION TECHNOLOGY HAD BEEN ADOPTED VERY FAST. BUT THE LAW OF DIMINISHING RETURN FROM OLD AGRIC. TECHNOLOGY ARRIVED VERY SOON
- WIDENING GAP BETWEEN DEVELOPED AND DEVELOPING COUNTRIES IN FOOD SECURITY
- ENVIRONMENTAL THREATS AND INCREASING NATURAL RESOURCES SCARCITIES ESPECIALLY WATER
- SUCCESSFUL INNOVATION IS A KEY FOR
 SUSTAINABILITY

Mankind is passing from the *primacy* of the *past* to the *primacy of expectations of vast future changes*. Harold D. Lasswell

SUSTAINABILITY?

SUSTAINABILITY IS: HOW CAN WE SUCCESSFULLY ORGANIZE ECONOMIC TRANSFORMATION?

INDONESIA

USA, JAPAN, KOREA & ALL

AGRICULTURAL INVOLUTION

AGRICULTURAL SIZE EXPANSION / EVOLUTION

UN CONFERENCE ON ENVIRONMENT AND DEVELOPMENT (AGENDA 21)

• <u>UN Conference on Environment and Development</u> –

- 20 years after the 1972 UN Conference on the Human Environment (Stockholm)
- Rio de Janeiro, 1992, after several years of preparatory meetings.
 - Resulting in Agenda 21 and the Rio Declaration

Agenda 21 (1992)

- Ch.1: <u>Preamble</u>:
 - Humanity is confronted with a worsening of poverty, hunger, ill health and illiteracy, and the continuing deterioration of the ecosystems.
 - Causes:
 - Population growth
 - Changing consumption patterns
 - Global warming and sea level rise
 - Etc.

Agenda 21 (1992)

Section I. Social and economic dimensions

- Ch. 2. Sustainable development in developing countries
- Ch. 3. Combating poverty
- Ch. 4. Changing consumption patterns
- Ch. 5. Demographic dynamics and sustainability
- Ch. 6. Human health conditions
- Ch. 7. Sustainable human settlement development
- Ch. 8. Integrating environment and development

Agenda 21 (1992)

Section II. Conservation and management of resources.

- Ch. 9. Protection of the atmosphere
- Ch. 10. Management of land resources
- Ch. 11. Combating deforestation
- Ch. 12. Combating desertification and drought
- Ch. 13. Sustainable mountain development
- Ch. 14. Sustainable agriculture and rural development
- Ch. 15. Conservation of biological diversity
- Ch. 16. Environmentally sound management of biotechnology

Ch. 16: Env. Sound Management of Biotechnology

<u>Preamble:</u> Modern biotechnology is a set of techniques for bringing about specific changes in DNA in organisms.

By itself, <u>biotechnology cannot resolve</u> all the fundamental problems of environment and development, <u>but it promises</u> to make a significant contribution in enabling the development of, for example, better health care, enhanced food security <u>through sustainable agricultural practices</u>, improved supplies of potable water, more efficient industrial development processes for transforming raw materials, support for sustainable methods of afforestation and reforestation, and detoxification of hazardous wastes.

Ch. 16: Env. sound management of biotechnology

Objective: Promote the development of sustainable applications of biotechnology and to establish appropriate enabling mechanisms, especially within developing countries, through three program areas:

- a. Increasing the availability of <u>food</u>, feed and renewable
- b. Improving <u>human health</u>;
- c. Enhancing protection of the environment
- d. Developing international mechanisms for cooperation

Estimated total annual cost (1993-2000): 5 billion USD.

Explaining What Lesson from 1992 to 2014 w/ Regard to Biotech Utilization

Rank	Country	Area (million hectares)	Biotech Crops
1	USA*	70.1	Maize, soybean, cotton, canola, sugar beet, alfalfa, papaya, squash
2	Brazil*	40.3	Soybean, maize, cotton
3	Argentina*	24.4	Soybean, maize, cotton
4	India*	11.0	Cotton
5	Canada*	10.8	Canola, maize, soybean, sugar beet
6	China*	4.2	Cotton, papaya, poplar, tomato, sweet pepper
7	Paraguay*	3.6	Soybean, maize, cotton
8	South Africa*	2.9	Maize, soybean, cotton
9	Pakistan*	2.8	Cotton
10	Uruguay*	1.5	Soybean, maize
11	Bolivia*	1.0	Soybean
12	Philippines*	0.8	Maize
13	Australia*	0.6	Cotton, canola
14	Burkina Faso*	0.5	Cotton
15	Myanmar*	0.3	Cotton
16	Spain*	0.1	Maize
17	Mexico*	0.1	Cotton, soybean
18	Colombia*	0.1	Cotton, maize
19	Sudan*	0.1	Cotton
20	Chile	<0.1	Maize, soybean, canola
21	Honduras	<0.1	Maize
22	Portugal	<0.1	Maize
23	Cuba	<0.1	Maize
24	Czech Republic	<0.1	Maize
25	Costa Rica	<0.1	Cotton, soybean
26	Romania	<0.1	Maize
27	Slovakia	<0.1	Maize
	Total	175.2	

Table 1. Global Area of Biotech Crops in 2013: by Country (Million Hectares)**

* 19 biotech mega-countries growing 50,000 hectares, or more, of biotech crops

** Rounded off to the nearest hundred thousand

Source: Clive James, 2013.

REAL WORLD? WHAT WILL FUTURE BE?

Food Production

Too much.

www.enterrafeed.com

CIRCULAR WAY OF THINKING IN MANAGING AND UTILIZING ENVIRONMENT

www.enterrafeed.com

Tables SF.4 through SF.7: Nutrient and Amino Acid Content of Black Soldier Fly Larvae

Amino Acid	Percent	Amino Acid	Percent
* Methionine	0.9 %	Tyrosine	2.5 %
* Lysine	3.4 %	Aspartic acid	4.6 %
* Leucine	3.5 %	Serine	0.1 %
* Isoleucine	2.0 %	Glutamic acid	3.8 %
* Histidine	1.9 %	Glycine	2.9 %
* Phenylalanine	2.2 %	Alanine	3.7 %
* Valine	3.4 %	Proline	3.3 %
* Arginine	2.2 %	Cystine	0.1 %
* Threonine	0.6 %	Ammonia +	
* Tryptophan	0.2 %	unidentified	1.3 %

Table SF.4. Amino Acid Content of Dried Soldier Fly Larvae, Dry Matter Basis (Sheppard, Newton)

* Essential

Table SF.5. Concentrations of Some Fatty Acids Present in Soldier Fly Prepupae Oil, Dry Matter Basis (Sheppard, Newton)

Fatty Acid	Percent	
Capric	1.6 %	
Lauric	53.2 %	
Myristic	6.6 %	
Palmitic	8.4 %	
Stearic	1.7 %	
Oleic	12.4 %	
Linoleic	8.8 %	

Mineral Content		Proximate Analysis		
Р	1.51 %	Crude Protein	42.1 %	
Κ	0.69 %	Ether Extract	34.8 %	
Ca	5.00 %	Crude Fiber	7.0 %	
Mg	0.39 %	Ash	14.6 %	
Mn	246 PPM	NFE	1.4 %	
Fe	1370 PPM	Moisture	7.0 %	
В	0 PPM			
Cu	6 PPM			
Zn	108 PPM			
Al	97 PPM			
Sr	53 PPM			
Ba	33 PPM			
Na	1325 PPM			

Table SF.6. Mineral Content and Proximate Analysis of Dried Soldier Fly Larvae, Dry Matter Basis (Sheppard, Newton)

CONVERTING ORGANIC WASTES INTO HIGHER PRODUCT VALUES AND BETTER LIVING ENVIRONMENT

CAN WE IDENTIFY APPROACHES IN AGRICULTURAL DEVELOPMENT?

DEVELOPED COUNTRIES MODEL

- SUCCESFUL INDUSTRIALIZATION INDUCING AGRICULTURAL DEVELOPMENT/EXPANSION AND INCREASING FARMERS' WELFARE
- ENERGY SURPLUS

- MORE ROOMS/CAPACITIES FOR NATURAL AND ENVIRONMENTAL PROTECTIONS
- INNOVATION IS A KEY FOR SUCCESSFUL ADAPTATION SUCH AS INDICATED BY HIGH FOOD SECURITY, LOW HUNGER INDEX AND ENLARGEMENT OF LAND HOLDING SIZE

 UTILIZATION OF BIOTECHNOLOGY IS BELIEVED BY THE US AND OTHER USER COUNTRIES

.....CONTINUED

DEVELOPING COUNTRIES MODEL

- AGRICULTURE DEVELOPMENT HAS BEEN BOUNDED BY LACK OF SUCCESS IN INDUSTRIALIZATION
- AGRICULTURAL INVOLUTION AND DECLINING SIZE OF LAND HOLDING
- ENVIRONMENTAL AND NATURAL RESOURCES
 DETERIORATION
- UNCONTROL POPULATION GROWTH
- LACK OF R&D CAPACITY
- FOOD INSECURITY
- HUNGER

SOME THOUGHTS

- DO WE BELIEVE INDUSTRIALIZATION AS A KEY FOR PROGRESS?
- WHAT WAS THE FIRST REQUIREMENT FOR SUCCESSFUL INDUSTRIALIZATION-K FACTOR
- WHAT WAYS FOR DEVELOPING COUNTRIES TO CREATE SUSTAINABLE AGRICULTURAL SYSTEMS
 - NEW INDUSTRIALIZATION VISION AND STRATEGY--START FROM THE END (WASTES)-RECREATION PRINCIPLE IN A CIRCULAR MODEL—MINIMIZING ENTROPY
 - BROADENING CONSUMER TASTES AND AGRICULTURAL DIVERSIFICATION
 - MAKING CONSERVATION AS AN INVESTMENT
 - BETTER UNDERSTANDING THE MARKETS

CLOSING LECTURE

- SUSTAINABILITY OR SUSTAINABLE DEVELOPMENT AGRICULTURAL SYSTEMS IS VERY COMPLEX
- SUCCESSFUL ADAPTATION IS APPROXIMATION OF SUSTAINABILITY
- JUST LIKE THE EVOLUTION OF ANIMALS OR PLANTS, THE MIND OF PEOPLE MUST ALSO EVOLVE TO SEEK THE BEST WAYS TO ADAPT WITH ALL KIND OF CHANGES

THANK YOU