

Household Survey Design Techniques

Workshop on Measuring Sustainable Agriculture, Food Security and Poverty Alleviation for enhancing Accountability in the Post 2015 Development Agenda. 24–28 November 2014, Bogor Indonesia

Alick Nyasulu United Nations Statistical Institute for Asia and the Pacific (SIAP)

Sampling Methods Survey Design Estimation of parameters

The need for sampling Sampling techniques • 3 • 2 **Basics of survey** Survey design parameters SIAP 3

Key Definitions

Why sample?

Sampled population is a collection of elements that were actually available for selection into the sample To make an inference about a population

 Studying entire pop is impractical or impossible
 Select a few households and make an inference about all households

Key Definitions

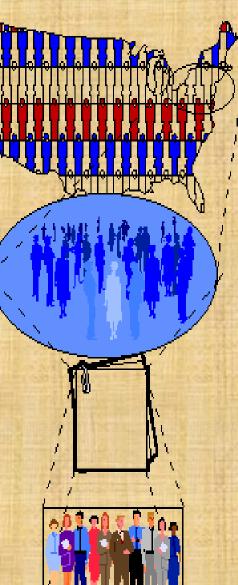
Sampling Unit

 A sampling unit is an entity that is selected in the sampling process.

Observational unit

Characteristic

A quantitative variable like age of a person, income, land size!


Qualitative variable likeemployment status of aperson

Who do you want to generalize to?

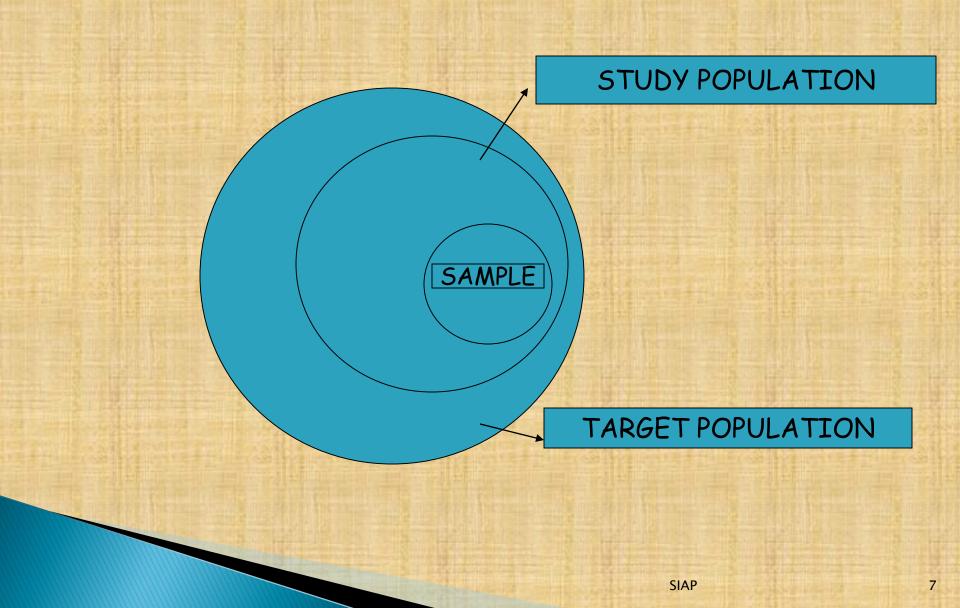
What population can you get access to?

How can you get access to them?

Who is in your study?

The Theoretical Population

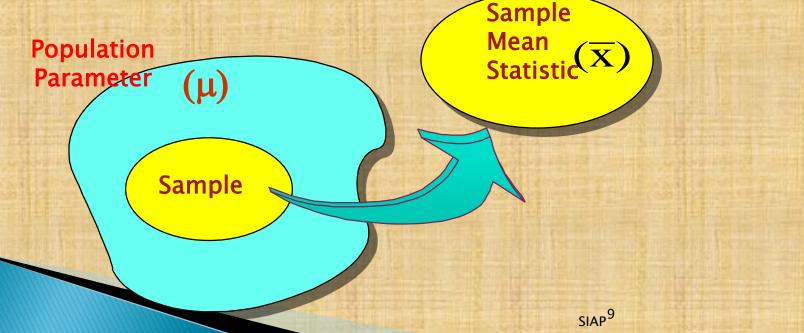
The Study Population


The Sampling Frame

The Sample

Definitions

SIAP


Population

 The population or universe is the entire group of all the units of analysis whose characteristics are to be estimated A target population is a collection of elements of interest as defined by survey objectives

Definitions

Population Parameter and Sample Statistic

- A population parameter is a numerical summary of a population
- Any numerical measure computed from a subset of the population (typically a sample) is a statistic.

Sample Design – two broad kinds

Probability sampling

each element of the population is assigned a non-zero chance of being included in the sample [our focus]

Non-Probability sampling

consists of a variety of procedures, including judgment-based and 'purposive' choice of elements - considered "representative" of the population

Basic Sampling Schemes

Simple random sampling (SRS): is a probability selection scheme where each unit in the population is given an equal probability of selection.

Systematic sampling: A method in which the sample is obtained by selecting every kth element of the population, where k is an integer > 1. Often the units are ordered with respect to that auxiliary data.

Basic Sampling Schemes

 Stratified sampling: Uses auxiliary information (stratification variables) to divide the sampling units the population into groups called 'strata' and increase the efficiency of a sample design.

Probability Proportional to Size (PPS): The procedure of sampling in which the units are selected with probability proportional to a given measure of size.

The size measure is the value of an *auxiliary variable* **X** related to the characteristic **Y** under study.

Simple Random Sampling (SRS)

SRS is simplest method of probability sampling

 SRS is special type of equal probability selection method (*epsem*). Rarely used in practice for large scale surveys

Theoretical basis for other sample designs

SRS with replacement (SRSW)

SRS without replacements (*SRSWOR*)

SRS selection procedures

3.

Get a list (sampling frame) which uniquely identifies each unit in the population Allocate a serial number to each unit of the frame

1.

2.

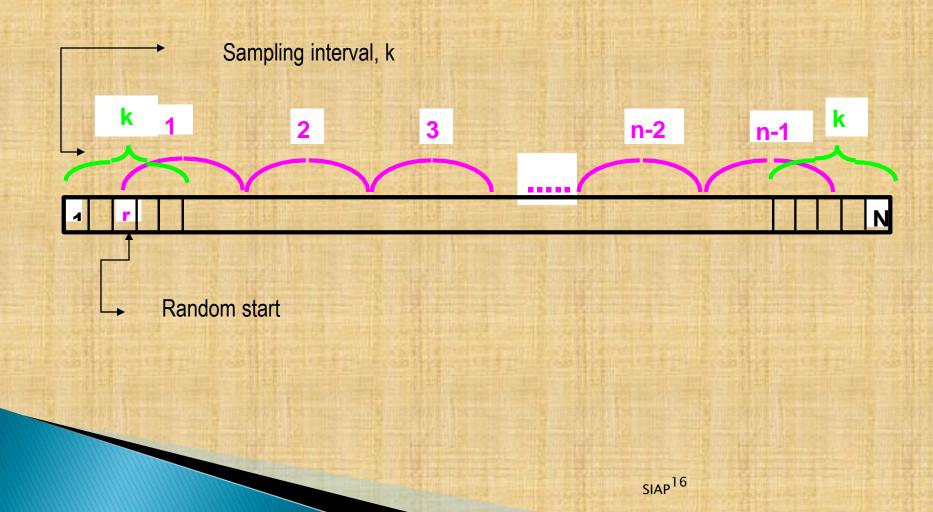
Generate random numbers [in the range of 1 to **M**] using Random Number Table/ Random Number Generator on computer:

For SRSWR: select the units with the serial numbers same as the first *n* random numbers generated, even if there be repetitions.

For SRSWOR: select the units with the serial numbers same as the first *n* <u>distinct</u> random numbers generated

SIAP

Systematic Sampling


 Systematic Sampling (SYS), like SRS, involves selecting *n* sample units from a population of *N* units

 Instead of randomly choosing the *n* units in the sample, a skip pattern is run through a list (frame) of the *N* units to select the sample

• The *skip* or *sampling interval*, k = N/n

Systematic Sampling

Systematic Sampling

Selection Procedure – Linear Systematic

<u>Sampling</u> <u>Steps involved:</u>

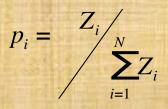
- Form a sequential list of population units
- Decide on a sample size *n* and compute the skip (*sampling interval*), k = N/n
- Choose a random number, r (random start) between 1 and k (inclusive)
- Add "k" to selected random number to select the second unit and continue to add "k" repeatedly to previously selected unit number to select the remainder of the sample

PPS Sampling

Sampling with Probability Proportional to Size (PPS)

 Probability of selection is related to an auxiliary variable, Z, that is a measure of "size"

Example


Number of households

Area of farms

 "Larger" units are given higher chance of selection than "smaller" units

• Selection probability of *I*th unit is

i = 1,2, ... , *N*

PPS Selection

Cumulative Total Method

Select a sample of 5 villages using varying probability WR sampling, the size being the number of households

Solution

 p_i

- Sampling unit: village
- Measure of size: number of households in village
- Selection probability:

= number of HHs in village i total number of HHs

	No. of HHs	
	(Measure of	Selection
Village	Size)	Probability
1	47	0.067
2	45	0.064
3	28	0.040
4	29	0.041
5	45	0.064
6	36	0.051
7	58	0.083
8	29	0.041
9	31	0.044
10	21	0.030
11	47	0.067
12	17	0.024
13	28	0.040
14	41	0.059
15	22	0.031
16	32	0.046
17	25	0.036
18	41	0.059
19	33	0.047
20	45	0.064
Total	700 SIAP	19

PPS Selection Cumulative Total Method (Contd.)

- Write down cumulative total for the sizes Z_i, i=1,2...N
- Choose a random number *r* such that 1 ≤ *r* ≤ *Z*
- Select *I*th population unit if
- $T_{i-1} \leq r \leq T_i$ where

 $T_{i-1} = Z_1 + Z_2 + \ldots + Z_{i-1}$

and

 $T_i = Z_1 + Z_2 + \ldots + Z_i$

Village	No. of HHs (Measure of Size) (Z _i)	Cumulative Size (T _i)	Assigned Random Numbers
1	47	47	1 - 47
2	45	92	48 - 92
3	28	120	93 -120
4	29	149	121 - 149
5	45	194	150 - 194
6	36	230	195-230
7	58	288	231 - 288
8	29	317	289 - 317
9	31	348	318 - 348
10	21	369	349 - 369
11	47	416	370 - 416
12	17	433	417 - 433
13	28	461	434 - 461
14	41	502	462 - 502
15	22	524	503 - 524
16	32	556	525 - 556
17	25	581	557 - 581
18	41	622	582 - 622
19	33	655	623 - 655
20	45	700	656 - 700
Total	700		

PPS Selection Cumulative Total Method (Contd.)

- To select a village, a random number r, $1 \le r \le 700$, is selected.
- Suppose r = 259, Since 231 ≤ 259 ≤ 288, the 7th village is therefore selected. The next 4 random numbers to be considered are 548, 170, 231, 505. Hence the required sample selected using PPS with replacement are 16th, 5th, 7th, 15th

Note: The 7th village is selected twice.

	No. of HHs		Assigned	
	(Measure of Size)	Cumulative Size	Random	
Village	(Z _i)	(T _i)	Numbers	
1	47	47	1 - 47	
2	45	92	48 - 92	
3	28	120	93 -120	
4	29	149	121 - 149	
5	45	194	150 - 194	
6	36	230	195-230	
7	58	288	231 - 288	
8	29	317	289 - 317	
9	31	348	318 - 348	
10	21	369	349 - 369	
11	47	416	370 - 416	
12	17	433	417 - 433	
13	28	461	434 - 461	
14	41	502	462 - 502	
15	22	524	503 - 524	
16	32	556	525 - 556	
17	25	58 1	557 - 581	
18	41	622	582 - 622	
19	33	655	623 - 655	
20	45	700	656 - 700	
Total	700			

Survey Design

- Structure of population is very diverse
 - High income or income groups?
 - Location issues?

Possible solutions??

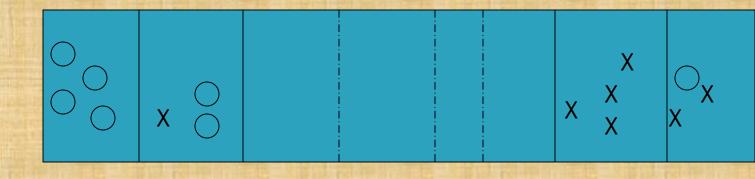
- Apply PPS techniques but consider segmenting the population
- Stratification and clustering

Impact on estimates

Systematic sampling is just a selection procedure

Stratification

Divide the population into a number of distinct groups (strata) based on auxiliary information – referred to as *stratification variables* – relating to study variable(s)


The division of the population into strata is termed stratification

Each stratum is composed of units that satisfy the condition set by the values of the stratifying variable.

Main purpose: to improve the sample estimations, i.e. to reduce the standard error of the estimates.

Stratified Sampling

Stratification - Mutually Exclusive subsets

h

N_h

Stratum no. 1

Stratum size N₁

N₂

2

N_H

Stratification

Stratified sampling involves:

- division or stratification of the population into homogeneous (similar) groups called strata; and selecting the sample using a selection procedure
 like SRS or systematic sampling or PPS within each stratum and
 - independent of the other strata

Clustering

Subsets of the listing units in the population

Set of clusters must be mutually exclusive and collectively exhaustive

- councils
- townships
- regions
- Institutions
- villages

Clustering

Single Stage

 There are 400 dairy farmers located in 20 districts in Province A

We wish to interview a sample of these farmers

- select a simple random sample of 5 districts
- interview all farmers in the 5 selected districts

Two Stage

Select a sample of clusters, as in the single-stage method

 From each selected cluster, select a subsample of listing units

Clustering

Single Stage

- Districts are the PSUsFrames are the listing
- unitsSampling probability
 - for each farmer is 5/20
- Thus, this is an EPSEM sample
- Sampling frame is the list of 20 districts

Two Stage

We want to interview a sample of 50 farmers
We can afford to visit 10 different districts
Thus, we need to interview 50/10 = 5 farmers at each district

Two Stage Clustering

PSUs are the districts
Listing units are the farmers
Sampling frames
Stage 1: List of 20 districts

 Stage 2: Lists of farmers in each selected district Stage 1: select a sample of 10 districts
Selection prob. proportional to "size"

Stage 2: select a sample of 5 farmers from each selected districts

At each stage, use one of the simple sampling methods

Clustering reduces logistical costs, lists of all 400 farmers may not be available

The estimates are less precise due to possible homogeneity

ESTIMATION

>

>

•

>

An estimator is a sample statistic

A sample statistic is a summary value of a variable calculated from the sample.

An estimator is any quantity calculated from the sample data **a function of sample observations** – which is used to give information about an unknown quantity of the population.

Example: sample mean is an estimator of the population mean.

Desirable characteristics

Unbiasedness=sample estimate equal to true population value

Consistency=as sample increases estimate gets closer to true population value

Efficiency=estimate with least variance

Base (sampling) weight: basic concept

Base weight...

•Is the inverse of the probability of selection OThus, depends on the sample selection plan

Number of units in the population being represented by the sample unit
OIn ideal conditions, the design weights take care of *"representativeness"*OBut, this is not true in *less than ideal conditions*

Sampling weight: basic concept

In a SRS design: N=10 and n=5

Population:

 $\pi = \frac{n}{N} = \frac{5}{10} = \frac{1}{2}$

Inclusion probability/probability of selection (chance to be selected in the sample)=

Each individual has 50% chance to be selected in the sample

Sampling weight: basic concept

Population:

SRS sample

Sampling weight = inverse of inclusion probability:

 $w = \frac{1}{\pi} = \frac{1}{1/2} = 2$ OR $w = \frac{1}{(n/N)} = \frac{N}{n} = \frac{10}{5} = 2$

Final weight: Illustration

ID	Stratum	probability of selection	Base weight (w _b)	у	Adjustment for non- response (w _r)	Calibration weight (w _c)	Final weight (W _F)	w _F *y
01	1	0.0025	400.0000	8				
02	2	0.0035	285.7143					
03	1	0.0018	571.4286	6				
04	2	0.0031	322.5806	10	1/2_	$= W_{2} \cdot W_{1}$	2 • 142	
05	1	0.0016	625.0000	5	"F	$= w_b \cdot w_b$	r ^w c	
06	2	0.0035	285.7143	18			ALL IN ST	
07	2	0.0038	266.6667	18				
08	1	0.0015	666.6667					
09	1_	0.0028	363.6364	9				

Thank You