A Brief Introduction to
Spatial Regression

Three Important Ways That Spatial Analysis Can
Help The Social Scientist

(i) Data integration:
Spatial analysis provides a basis for integration and
data collection at different spatial scales and time
dimensions. Data integration is a central function of
the application of GIS.

(i) Exploratory spatial data analysis (ESDA):
ESDA is a collection of techniques to describe and
visualize spatial distributions, identify atypical
locations or spatial outliers, discover patterns of
spatial association, clusters or hot spots, and
suggest spatial regimes or other forms of spatial
heterogeneity (Anselin, 1994, 1999D).




Three Important Ways That Spatial Analysis Can
Help The Social Scientist

(i) Confirmatory spatial data analysis:

Spatial modeling techniques, such as regression
analysis can also be implemented to explicitly
Incorporate the mechanisms underlying the spatial
patterns.

Some (but not all) regression
assumptions

1. The dependent variable should be normally
distributed (i.e., the histogram of the variable
should look like a bell curve)

Ideally, this will also be true of independent variables, but this is
not essential. Independent variables can also be binary (i.e., have
two values, such as 1 (yes) and 0 (no))

2. The predictors should not be strongly correlated
with each other (i.e., no multicollinearity)

3. Very importantly, the observations should be
independent of each other. (The same holds for
regression residuals). If this assumption is violated,
our coefficient estimates could be wrong!




Cluster analysis

Moran’s I: Compares the value of the variable at any one
location with the value at all other locations.
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A focus on where the non-randomness may be
located, in terms of significant clusters or spatial
outliers is provided by an analysis of the local
indicators of spatial association (LISA).

Gobal indicators

‘Is there spatial autocorrelation’?

Global indicators of spatial association provide the answer

E.g. Moran’s |
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« Where “~” to indicate deviations from mean




LISA

= ‘Where is the spatial autocorrelation’?

= Local indicators of spatial association (LISA) provide
answer
= Anselin (1995) definition: LISA

— Indicates spatial clustering of similar values around the
observation

— Sum of LISAs proportional to a Global indicator

Local Moran |

= Local Indicator (Local Moran I)
— Product of (centred) x and ‘neighbouring’ x at place i

— Divided by the variance of x
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< Note: mean of Local = Global
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Oral Cancer Death Rate
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Moran scatter-plot: components of spatial autocorrelation
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US Income Convergence Example
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Example: London crime data

Burglary per person 2001
[ ]0.001 - 0.007
[ 10.007-0.011
0.011 - 0.015
I 0.015 - 0.021
I 0.021 - 0.035




Local Moran | Map
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[ ] Not-significant
[] p=0.05

1 p-0.01
[ pr-0.001

B r-0.0001




Moran Scatter Plot

=0.6153

Moran's

TOALVIANT A\

S #

BUDRATE(O]

Example: Growth in London crime
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Local Moran | z-scores

= 7(0.05) = 1.96, no correction
e 7(0.05) = 3.77, bonferroni correction (634 wards)
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Conclusions on LISA

e Local Moran’s | (and other LISA) useful for
showing places where significant spatial
autocorrelation exists

e Purely descriptive

e Though potential to combine with regression
analysis for further analysis
— Residuals?
— Dependent variable?




An Example of a Normal Distribution

Number of People by Height
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* Sometimes, it is possible to transform a variable’s distribution by
subjecting it to some simple algebraic operation.
— The logarithmic transformation is the most widely used to achieve
normality when the variable is positively skewed (as in the image on
the left below)
— Analysis is then performed on the transformed variable.
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Spatial Autocorrelation

— There is spatial autocorrelation in a variable if observations
that are closer to each other in space have related values
(Tobler’s Law)

— One of the regression assumptions is independence of
observations. If this doesn’t hold, we obtain inaccurate
estimates of the 8 coefficients, and the error term € contains
spatial dependencies (i.e., meaningful information), whereas
we want the error to not be distinguishable from random
noise.

Spatial autocorrelation

Assume places (regions, districts, firms people
etc) are fixed

Variable (x) recorded at places s

Is the data x random across space or are there
similarities between neighbours?

Does a high value of x tend to be associated
with a high value of x in neighbouring places
(and low values with low)?
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Positive spatial autocorrelation
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Imagine a problem with a spatial component...

This example is
obviously a
dramatization,
but nonetheless,
in many spatial
problems points
which are close
together have
similar values

Foints with similar
values cluster
together -= (spatial)
dependencies are
present - regression
assumptions are
violated!

28
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But how do we know if spatial
dependencies exist?

e Moran’s | (1950) — a rather old and perhaps the most
widely used method of testing for spatial

autocorrelation, or spatial dependencies
— We can determine a p-value for Moran’s | (i.e., an indicator

of whether spatial autocorrelation is statistically significant).
* For more on Moran’s |, see http://en.wikipedia.org/wiki/Moran%27s |

— Just as the non-spatial correlation coefficient, ranges from -1
to1l

— Can be calculated in ArcGIS

e Other indices of spatial autocorrelation commonly
used include:

— Geary’s ¢ (1954)
— Getis and Ord’s G-statistic (1992)

* For non-negative values only -




So, when a problem has a spatial
component, we should:

- Run the non-spatial regression

-  Test the regression residuals for spatial
autocorrelation, using Moran’s | or some other
index

- If no significant spatial autocorrelation exists, STOP.
Otherwise, if the spatial dependencies are
significant, use a special model which takes spatial
dependencies into account.

Types of Models: Spatial Error

 Model
— Start with basic model
* y= Bx+e e~N(0,5?)
—y= Bx+e+Awe

e |f A=0, reduces to OLS, if A0, OLS is
unbiased and consistent, but SE will be
wrong and the betas will be inefficient




EMPIRICAL MODEL
Negative binomial (NB) distribution

Va Qopi
Qo +1/a)( 1la 4
Pr(Qopi | Xi» e, 4) = Qoo T/ @) [1/a+ﬂ1J [1/a+ﬂ,J

A is the expected interval-usage count for a given interval
(between interchanges) and a is the overdispersion parameter

Log-likelihood function (L) of the NB regression model

L= ZN:{Qi_lln(j +1/a) - In(Qoo; 1)

—(Qopi 1/ @) In(1+ aexp(X;5)) + Qup; IN(r) + Qo X, 5}
Spatial heteroskedastic autocorrelation consistent (HAC)
estimator

- 2
u; =r;e, ¢ ~iid(0,0%)
r; is the j*h row of matrix R.

A consistent non-parametric estimator of the asymptotic
distribution of the nonstochastic location determinant by Kelejian
and Prucha (2007)
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Types of Models: Spatial Lag

e Spatial lag model

— Dependent variable is affected by the values
of the dependent variables in nearby places
e Land value in a county is a function of land

value in nearby counties, not just related to
common unmeasured variables

Types of Models: Spatial Lag

* Model
—Y = Bx, + dwy + e,
e Can also include wx; term

—OLS in this case is biased and inconsistent




OLS Residuals vs. SAR Residuals

OLS Residuals SL Residuals

Non-random patterns and clustering Random Noise

S8R Residuals
[ «-2.500000 Std. Dev,

[ -2.500000 - -1,500000 Std. Devy,
[-1.500000 - -0.500000 Std, Devy,
[ -0.500000 - 0,500000 Std., Dev,
[ 0,500000 - 1,500000 Std, Dev.
[ 1.500000 - 2,500000 Std, Dev.
I > 2.500000 Std. Dev.

0L5 Residuals
[ < -1.500000 Std. Dev.

[ -1.500000 - -0.500000 Std. Devy.
[ -0.500000 - 0,500000 Std, Dev,
[ 0.500000 - 1,500000 Std, Dev,
[ 1500000 - 2,500000 Std, e,
M > 2500000 Std. Dev,

Empirical model

General spatial hedonic model
y=pWy+Xp+e,

e=(I1-AW) '
—vyisann X 1 vector, dependent variable (natural
log of the sale price of a single-family house)
— WYy is an n X 1 vector, spatial lag of the dependent

— W is a spatial weight matrix, neighborhood
structure

— p, A are the parameters of the spatially lagged
dependent variable and spatial autoregressive
structure of the disturbance €

— Xisann X (k + 1) matrix, explanatory variables
including measures of ambient water quality

— B is a vector of parameters,
— n normally distributed error term




Individual parcel data

e Detached single-
family houses sold
between 2001 and
2004

e Total of 2,135 sales
occurred during the
2001-2004 period

— 1,394 sales in NC and
741 salesin TN

— Price adjusted to
2001 dollars using the
annual housing price
index for each state

— After eliminating
missing data, 595
sales from NC and
497 sales from TN
used

Data

Tennessee

_.'( North Carolina
*  Observations S ) :

®_- Canton, NC _

County Boundary I

===== State Boundary

Blue Ridge Paper Company

Pigeon River Watershed

— Pigeon River

10 Subwatersheds Crossing the Pigeon River




