Second Regional Training Course on Sampling Methods for Producing Core Data Items for Agricultural and Rural Statistics

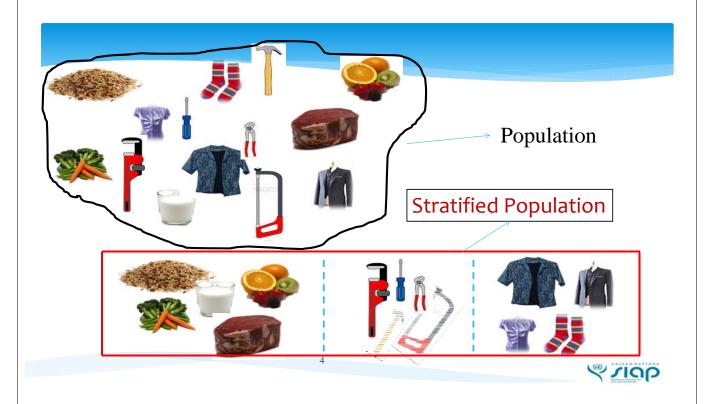
Module 2: Review of Basics of Sampling Methods: Probability Sampling, Sample Selection and Sample Design and Estimation

Session 2.3: Objectives and use of stratification

9 – 20 November 2015, Jakarta, Indonesia

Why not SRS?

- * Sampling units are often different in regards with:
 - * Unemployment gender, education, age,...


 * Health age, region, income,...
 - * Crop climate, soil, ...
- * Sample size in subpopulations is often matter
- * Why not using our knowledge about the parameter?
 - * Divide sampling units into homogeneous groups

How to make our sample more "representative"? and our estimates "more precise"?

Make sure each "group of similar units" is represented in the sample

Stratification

- Divide the population into distinct groups (strata) based on auxiliary information (stratification variables)
- * The division of the population into strata is termed "stratification"
- * Each "stratum" is composed of homogeneous units in regards with stratifying variable.

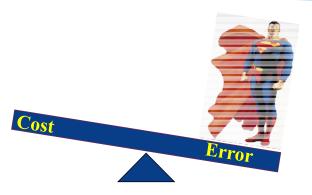
5

Stratified sampling involves

- 1) Find correlates for the study variable
- 2) Stratification of the population into homogeneous (similar) groups
- 3) Selection of sampling units using a selection procedure
 - * like SRS, SYS, etc within each stratum, and
 - * independent of the other strata.
- 4) Estimate parameter for each stratum
- 5) Combine the estimates and inference about the population

In stratified sampling

- * Sampling fractions; and
- * Selection Procedure


May be different across strata

- * The total sample size is distributed over all the strata (allocation)
- * The stratum results are combined to provide an estimate for entire population

7

Main goal for stratification

Reduce sampling error/increase precision

8

Objectives of Stratification

- To obtain estimates of higher precision for given per unit of cost
- Providing separate estimates required for each stratum
- Using different sampling procedures for different strata, to (i) increase precision of the estimates (ii) organize the field work

SIOD

Implicit stratification

- * Systematic sampling with the units arranged in a certain order
- * Prior to sample selection, all the units are sorted with respect to variable(s) that are expected to be correlated with the variable of interest. (Normally geographical location of the units)
- * It guarantees that units are spread across the homogenous groups (strata).
- * Implicit stratification: strata with size k (sampling interval)

Implicit stratification

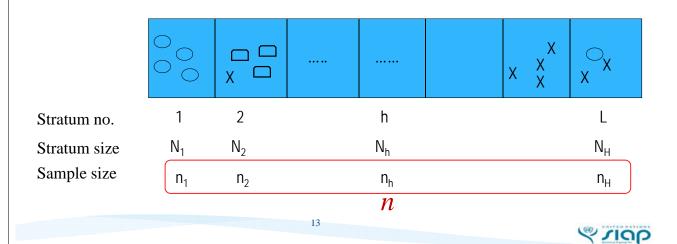
11

* N=15 , n=3 , k=15/3=5

r=2 (random number between 1 &5)

Defining Strata

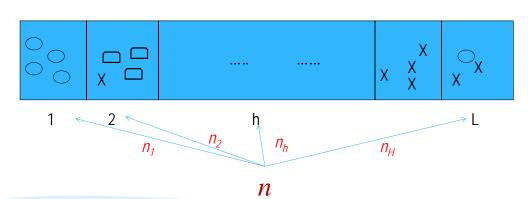
1. Choice of stratification variables:


- * Homogeneous within strata; Heterogeneous across strata
- * Highly correlated with study variables (location with economic status, output with profit or number of employees etc)
- * More practical to chose naturally defined strata

2. Number of strata

- * Depends on availability of stratifying information in sampling frame: less information, fewer strata
- * At least two sampling units per stratum to be able to compute sampling error

Sample allocation to strata



Sample Allocation to Strata

Maximize precision for fixed cost

OR

Minimize cost for required precision

Sample Allocation to Strata

Alternatives Methods:

- * Proportionate allocation
- * Disproportionate allocation
 - * Neyman allocation (minimum variance) (discuss later)
 - * Optimum allocation (cost and variance) (not discussed here!)

15

proportionate allocation

Share of each stratum from total sample is $\frac{N_h}{N}$, proportional to its size

The number of elements taken from the h^{th} stratum is

$$n_h = n \times \frac{N_h}{N}$$

Different view: sampling rate in each stratum is fixed and equal to $\frac{n}{N}$

$$n_h = N_h \times \frac{n}{N}$$

SIOD

Probability of selection

Assuming SRSWOR in each stratum

Probability of selection may be different in each stratum

$$P_h = \frac{n_h}{N_h}$$

17

