Second Regional Training Course on Sampling Methods for **Producing Core Data Items for Agricultural and Rural Statistics**

Module 2: Review of Basics of Sampling Methods: Probability Sampling, Sample Selection and Sample Design and Estimation

Session 2.5: Objectives of Multistage Sampling and **Illustrative Designs**

Sampling journey till now

Design(representativeness)

Selection method (chance)

Element

- Costly
- No guarantee of representation

Cluster

- Improve representativeness/precision
- But cost is high

- Reduces the cost
- But also reduces precision

SRS

- Good for theory development
- But Not practical

- Easy implementation
- But All units are not of same importance (size)

PPS

Unequal probabilities (not epsem)

Stratification

- Subdividing population into mutually exclusive groups
- Elements are homogenous in stratum
- ➤ We select an independent sample from each strum
- ➤ Purpose is reducing sampling error

2

Clustering

- Subdividing population into mutually exclusive groups
- Elements are heterogeneous in cluster
- Clusters are sampling units
- ➤ Purpose is reducing cost

Main objective for stratification

<u>Increase representativeness:</u> *Reduce sampling error/increase precision*

Cluster Sampling

Cost Solution

- ☐ Select a group of elements (Cluster)
- ☐ Then list elements only within the selected cluster

Problems in cluster sampling

In addition to cost:

- □ No control over sample size (clusters vary in size)
- □ Statistical inefficiency due to homogeneous clusters

Solution: sub-sampling

- □ Select more clusters and sub-sample of elements in each cluster
- □ Two possibilities:
 - ☐ Fixed sampling rate in all clusters (epsem)
 - ☐ Fixed sample size in all clusters (not epsem)

4 LIOP

In the context of agriculture surveys

Possible stratifications

- ➤ Space-time combinations (province, urban/rural, zone, month, season) in combination with a size variable:
 - o Level of production (normally a linear function of different products)
 - o Size of holdings (normally sub-strata)

Your country?

Possible clustering

- ➤ <u>Space:</u> Farm/village/town/block/area...
- ➤ <u>Space-time</u>: day-site
- ➤ <u>Space-time-activity</u>: landing-time-site

9

Use of systematic selection: in PPS without replacement

j	Size	Cumulative of size
1	Z1	Z1=T1
2	Z2	Z1+Z2=T2
3	Z3	Z1+Z2+Z3=T3
4	Z 4	Z1++Z4=T4
5	Z5	Z1++Z5=T5
6	Z6	Z1++Z6=T6
7	Z 7	Z1++Z7=T7
8	Z8	Z1++Z8=T8
9	Z9	Z1++Z9=T9
10	Z10	Z1++Z10=T

10

We need n sample Assume T = 100 and n = 4

- 1. calculate sampling interval: k=T/n=100/4=25
- 2. Generate random number r between 1 and k (e.g 1< r =10<25)
- $3.X_i=r+(i-1)*I$ (i=1... n)
- 4. j is selected if $T_{i-1} < X_i < T_i$

Use of systematic selection: in PPS without replacement

11

Problem:

Any unit with size Z>k may be selected more than once

Solution:

Put a restriction on measure of size: $Z_{max}=k=T/n$

In practice clusters are selected PPS, size being population of each cluster We construct clusters to (1) meet above criterion; (2) manage enumerators' workload; (3) maintain heterogeneity in clusters

